Szydlowski Lukasz, Ehlich Jiri, Szczerbiak Pawel, Shibata Noriko, Goryanin Igor
Biological Systems Unit, Okinawa Institute of Science and Technology, Onna, Japan.
Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland.
Front Microbiol. 2022 Sep 14;13:951044. doi: 10.3389/fmicb.2022.951044. eCollection 2022.
In this study, electrogenic microbial communities originating from a single source were multiplied using our custom-made, 96-well-plate-based microbial fuel cell (MFC) array. Developed communities operated under different pH conditions and produced currents up to 19.4 A/m3 (0.6 A/m2) within 2 days of inoculation. Microscopic observations [combined scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS)] revealed that some species present in the anodic biofilm adsorbed copper on their surface because of the bioleaching of the printed circuit board (PCB), yielding Cu2 + ions up to 600 mg/L. Beta- diversity indicates taxonomic divergence among all communities, but functional clustering is based on reactor pH. Annotated metagenomes showed the high presence of multicopper oxidases and Cu-resistance genes, as well as genes encoding aliphatic and aromatic hydrocarbon-degrading enzymes, corresponding to PCB bioleaching. Metagenome analysis revealed a high abundance of spp., previously characterized in MFCs, which did not grow at pH 4. Binning metagenomes allowed us to identify novel species, one belonging to , not yet associated with electrogenicity and enriched only in the pH 7 anode. Furthermore, we identified 854 unique protein-coding genes in that lacked sequence homology with other metagenomes. The function of some genes was predicted with high accuracy through deep functional residue identification (DeepFRI), with several of these genes potentially related to electrogenic capacity. Our results demonstrate the feasibility of using MFC arrays for the enrichment of functional electrogenic microbial consortia and data mining for the comparative analysis of either consortia or their members.
在本研究中,源自单一来源的产电微生物群落使用我们定制的基于96孔板的微生物燃料电池(MFC)阵列进行增殖。所培养的群落于不同pH条件下运行,并在接种后2天内产生高达19.4 A/m³(0.6 A/m²)的电流。微观观察[结合扫描电子显微镜(SEM)和能量色散光谱(EDS)]显示,由于印刷电路板(PCB)的生物浸出,阳极生物膜中存在的某些物种在其表面吸附了铜,产生高达600 mg/L的Cu²⁺离子。β多样性表明所有群落之间的分类差异,但功能聚类基于反应器pH。注释的宏基因组显示多铜氧化酶和铜抗性基因以及编码脂肪族和芳香族烃降解酶的基因高度存在,这与PCB生物浸出相对应。宏基因组分析显示大量存在于MFC中的 spp.在pH 4时不生长。对宏基因组进行分箱使我们能够鉴定新物种,其中一个属于 ,尚未与产电相关且仅在pH 7阳极中富集。此外,我们在 中鉴定出854个与其他宏基因组缺乏序列同源性的独特蛋白质编码基因。通过深度功能残基鉴定(DeepFRI)对一些基因的功能进行了高精度预测,其中一些基因可能与产电能力相关。我们的结果证明了使用MFC阵列富集功能性产电微生物群落以及进行数据挖掘以对群落或其成员进行比较分析的可行性。