Najer Adrian, Blight Joshua, Ducker Catherine B, Gasbarri Matteo, Brown Jonathan C, Che Junyi, Høgset Håkon, Saunders Catherine, Ojansivu Miina, Lu Zixuan, Lin Yiyang, Yeow Jonathan, Rifaie-Graham Omar, Potter Michael, Tonkin Renée, Penders Jelle, Doutch James J, Georgiadou Athina, Barriga Hanna M G, Holme Margaret N, Cunnington Aubrey J, Bugeon Laurence, Dallman Margaret J, Barclay Wendy S, Stellacci Francesco, Baum Jake, Stevens Molly M
Department of Materials, Department of Bioengineering, and Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, U.K.
Department of Life Sciences, Imperial College London, London, SW7 2AZ, U.K.
ACS Cent Sci. 2022 Sep 28;8(9):1238-1257. doi: 10.1021/acscentsci.1c01368. Epub 2022 May 3.
Infectious diseases continue to pose a substantial burden on global populations, requiring innovative broad-spectrum prophylactic and treatment alternatives. Here, we have designed modular synthetic polymer nanoparticles that mimic functional components of host cell membranes, yielding multivalent nanomimics that act by directly binding to varied pathogens. Nanomimic blood circulation time was prolonged by reformulating polymer-lipid hybrids. Femtomolar concentrations of the polymer nanomimics were sufficient to inhibit herpes simplex virus type 2 (HSV-2) entry into epithelial cells, while higher doses were needed against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Given their observed virustatic mode of action, the nanomimics were also tested with malaria parasite blood-stage merozoites, which lose their invasive capacity after a few minutes. Efficient inhibition of merozoite invasion of red blood cells was demonstrated both and using a preclinical rodent malaria model. We envision these nanomimics forming an adaptable platform for developing pathogen entry inhibitors and as immunomodulators, wherein nanomimic-inhibited pathogens can be secondarily targeted to sites of immune recognition.
传染病继续给全球人口带来沉重负担,需要创新的广谱预防和治疗方法。在此,我们设计了模拟宿主细胞膜功能成分的模块化合成聚合物纳米颗粒,产生通过直接结合多种病原体起作用的多价纳米模拟物。通过重新配制聚合物-脂质杂化物延长了纳米模拟物的血液循环时间。飞摩尔浓度的聚合物纳米模拟物足以抑制2型单纯疱疹病毒(HSV-2)进入上皮细胞,而针对严重急性呼吸综合征冠状病毒2(SARS-CoV-2)则需要更高剂量。鉴于观察到的纳米模拟物的病毒静止作用模式,还对纳米模拟物与疟原虫血液阶段裂殖子进行了测试,疟原虫血液阶段裂殖子在几分钟后就会失去其侵袭能力。使用临床前啮齿动物疟疾模型在 和 中均证明了对裂殖子入侵红细胞的有效抑制。我们设想这些纳米模拟物形成一个适应性平台,用于开发病原体进入抑制剂和作为免疫调节剂,其中纳米模拟物抑制的病原体可以在其次被靶向免疫识别位点。