Lo Chun-Yuan, Wu Yuhang, Awuyah Elorm, Meli Dilara, Nguyen Dan My, Wu Ruiheng, Xu Bohan, Strzalka Joseph, Rivnay Jonathan, Martin David C, Kayser Laure V
Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware, 19716.
Department of Materials Science and Engineering, University of Delaware, Newark, Delaware, 19716.
Polym Chem. 2022;13(19):2764-2775. doi: 10.1039/d2py00271j. Epub 2022 Mar 22.
The commercially available polyelectrolyte complex poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) is ubiquitous in organic and hybrid electronics. As such, it has often been used as a benchmark material for fundamental studies and the development of new electronic devices. Yet, most studies on PEDOT:PSS have focused on its electronic conductivity in dry environments, with less consideration given to its ion transport, coupled ionic-electronic transport, and charge storage properties in aqueous environments. These properties are essential for applications in bioelectronics (sensors, actuators), charge storage devices, and electrochromic displays. Importantly, past studies on mixed ionic-electronic transport in PEDOT:PSS neglected to consider how the molecular structure of PSS affects mixed ionic-electronic transport. Herein, we therefore investigated the effect of the molecular weight and size distribution of PSS on the electronic properties and morphology of PEDOT:PSS both in dry and aqueous environments, and overall performance in organic electrochemical transistors (OECTs). Using reversible addition-fragmentation chain transfer (RAFT) polymerization with two different chain transfer agents, six PSS samples with monomodal, narrow ( = 1.1) and broad ( = 1.7) size distributions and varying molecular weights were synthesized and used as matrices for PEDOT. We found that using higher molecular weight of PSS ( = 145 kg mol) and broad dispersity led to OECTs with the highest transconductance (up to 16 mS) and [ ] values (~140 F·cmVs) in PEDOT:PSS, despite having a lower volumetric capacitance ( = 35 ± 4 F cm). The differences were best explained by studying the microstructure of the films by atomic force microscopy (AFM). We found that heterogeneities in the PEDOT:PSS films (interconnected and large PEDOT- and PSS-rich domains) obtained from high molecular weight and high dispersity PSS led to higher charge mobility ( ~ 4 cmVs) and hence transconductance. These studies highlight the importance of considering molecular weight and size distribution in organic mixed ionic-electronic conductor, and could pave the way to designing high performance organic electronics for biological interfaces.
市售的聚电解质复合物聚(3,4 - 亚乙二氧基噻吩):聚(苯乙烯磺酸盐)(PEDOT:PSS)在有机和混合电子学中无处不在。因此,它常被用作基础研究和新型电子器件开发的基准材料。然而,大多数关于PEDOT:PSS的研究都集中在其在干燥环境中的电导率,而较少考虑其在水性环境中的离子传输、离子 - 电子耦合传输和电荷存储特性。这些特性对于生物电子学(传感器、致动器)、电荷存储器件和电致变色显示器中的应用至关重要。重要的是,过去关于PEDOT:PSS中混合离子 - 电子传输的研究忽略了考虑PSS的分子结构如何影响混合离子 - 电子传输。因此,在此我们研究了PSS的分子量和尺寸分布对PEDOT:PSS在干燥和水性环境中的电子性质和形态以及在有机电化学晶体管(OECT)中的整体性能的影响。使用具有两种不同链转移剂的可逆加成 - 断裂链转移(RAFT)聚合,合成了六种具有单峰、窄( = 1.1)和宽( = 1.7)尺寸分布且分子量不同的PSS样品,并将其用作PEDOT的基质。我们发现,尽管体积电容较低( = 35 ± 4 F cm),但使用较高分子量的PSS( = 145 kg mol)和宽分散性会导致PEDOT:PSS中的OECT具有最高的跨导(高达16 mS)和[ ]值(~140 F·cmVs)。通过原子力显微镜(AFM)研究薄膜的微观结构可以最好地解释这些差异。我们发现,由高分子量和高分散性PSS获得的PEDOT:PSS薄膜中的不均匀性(相互连接且大的富含PEDOT和PSS的区域)导致更高的电荷迁移率( ~ 4 cmVs)并因此导致更高的跨导。这些研究突出了在有机混合离子 - 电子导体中考虑分子量和尺寸分布的重要性,并可能为设计用于生物界面的高性能有机电子器件铺平道路。