Suppr超能文献

聚苯乙烯磺酸钠(PSS)的分子量和尺寸分布对聚(3,4-乙撑二氧噻吩):聚苯乙烯磺酸钠(PEDOT:PSS)中离子-电子混合传输的影响。

Influence of the molecular weight and size distribution of PSS on mixed ionic-electronic transport in PEDOT:PSS.

作者信息

Lo Chun-Yuan, Wu Yuhang, Awuyah Elorm, Meli Dilara, Nguyen Dan My, Wu Ruiheng, Xu Bohan, Strzalka Joseph, Rivnay Jonathan, Martin David C, Kayser Laure V

机构信息

Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware, 19716.

Department of Materials Science and Engineering, University of Delaware, Newark, Delaware, 19716.

出版信息

Polym Chem. 2022;13(19):2764-2775. doi: 10.1039/d2py00271j. Epub 2022 Mar 22.

Abstract

The commercially available polyelectrolyte complex poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) is ubiquitous in organic and hybrid electronics. As such, it has often been used as a benchmark material for fundamental studies and the development of new electronic devices. Yet, most studies on PEDOT:PSS have focused on its electronic conductivity in dry environments, with less consideration given to its ion transport, coupled ionic-electronic transport, and charge storage properties in aqueous environments. These properties are essential for applications in bioelectronics (sensors, actuators), charge storage devices, and electrochromic displays. Importantly, past studies on mixed ionic-electronic transport in PEDOT:PSS neglected to consider how the molecular structure of PSS affects mixed ionic-electronic transport. Herein, we therefore investigated the effect of the molecular weight and size distribution of PSS on the electronic properties and morphology of PEDOT:PSS both in dry and aqueous environments, and overall performance in organic electrochemical transistors (OECTs). Using reversible addition-fragmentation chain transfer (RAFT) polymerization with two different chain transfer agents, six PSS samples with monomodal, narrow ( = 1.1) and broad ( = 1.7) size distributions and varying molecular weights were synthesized and used as matrices for PEDOT. We found that using higher molecular weight of PSS ( = 145 kg mol) and broad dispersity led to OECTs with the highest transconductance (up to 16 mS) and [ ] values (~140 F·cmVs) in PEDOT:PSS, despite having a lower volumetric capacitance ( = 35 ± 4 F cm). The differences were best explained by studying the microstructure of the films by atomic force microscopy (AFM). We found that heterogeneities in the PEDOT:PSS films (interconnected and large PEDOT- and PSS-rich domains) obtained from high molecular weight and high dispersity PSS led to higher charge mobility ( ~ 4 cmVs) and hence transconductance. These studies highlight the importance of considering molecular weight and size distribution in organic mixed ionic-electronic conductor, and could pave the way to designing high performance organic electronics for biological interfaces.

摘要

市售的聚电解质复合物聚(3,4 - 亚乙二氧基噻吩):聚(苯乙烯磺酸盐)(PEDOT:PSS)在有机和混合电子学中无处不在。因此,它常被用作基础研究和新型电子器件开发的基准材料。然而,大多数关于PEDOT:PSS的研究都集中在其在干燥环境中的电导率,而较少考虑其在水性环境中的离子传输、离子 - 电子耦合传输和电荷存储特性。这些特性对于生物电子学(传感器、致动器)、电荷存储器件和电致变色显示器中的应用至关重要。重要的是,过去关于PEDOT:PSS中混合离子 - 电子传输的研究忽略了考虑PSS的分子结构如何影响混合离子 - 电子传输。因此,在此我们研究了PSS的分子量和尺寸分布对PEDOT:PSS在干燥和水性环境中的电子性质和形态以及在有机电化学晶体管(OECT)中的整体性能的影响。使用具有两种不同链转移剂的可逆加成 - 断裂链转移(RAFT)聚合,合成了六种具有单峰、窄( = 1.1)和宽( = 1.7)尺寸分布且分子量不同的PSS样品,并将其用作PEDOT的基质。我们发现,尽管体积电容较低( = 35 ± 4 F cm),但使用较高分子量的PSS( = 145 kg mol)和宽分散性会导致PEDOT:PSS中的OECT具有最高的跨导(高达16 mS)和[ ]值(~140 F·cmVs)。通过原子力显微镜(AFM)研究薄膜的微观结构可以最好地解释这些差异。我们发现,由高分子量和高分散性PSS获得的PEDOT:PSS薄膜中的不均匀性(相互连接且大的富含PEDOT和PSS的区域)导致更高的电荷迁移率( ~ 4 cmVs)并因此导致更高的跨导。这些研究突出了在有机混合离子 - 电子导体中考虑分子量和尺寸分布的重要性,并可能为设计用于生物界面的高性能有机电子器件铺平道路。

相似文献

1
Influence of the molecular weight and size distribution of PSS on mixed ionic-electronic transport in PEDOT:PSS.
Polym Chem. 2022;13(19):2764-2775. doi: 10.1039/d2py00271j. Epub 2022 Mar 22.
4
Crown ether enabled enhancement of ionic-electronic properties of PEDOT:PSS.
Mater Horiz. 2022 Aug 30;9(9):2408-2415. doi: 10.1039/d2mh00496h.
6
Enhancement-Mode PEDOT:PSS Organic Electrochemical Transistors Using Molecular De-Doping.
Adv Mater. 2020 May;32(19):e2000270. doi: 10.1002/adma.202000270. Epub 2020 Mar 23.
7
Electrochemical Fabrication and Characterization of Organic Electrochemical Transistors Using poly(3,4-ethylenedioxythiophene) with Various Counterions.
ACS Appl Mater Interfaces. 2022 Sep 21;14(37):42289-42297. doi: 10.1021/acsami.2c10149. Epub 2022 Sep 12.
8
A PEDOT based graft copolymer with enhanced electronic stability.
Mater Horiz. 2024 Sep 30;11(19):4809-4818. doi: 10.1039/d4mh00654b.

引用本文的文献

1
Biomolecule Functionalization of Poly(3,4-ethylenedioxythiophene) Surfaces via Thiol-Maleimide Click-Chemistry.
Chem Mater. 2025 Jul 15;37(15):6015-6025. doi: 10.1021/acs.chemmater.5c01372. eCollection 2025 Aug 12.
2
3D Printing Highly Efficient Ion-Exchange Materials via a Polyelectrolyte Microphase Separation Strategy.
Small Sci. 2024 Mar 10;4(5):2400019. doi: 10.1002/smsc.202400019. eCollection 2024 May.
3
Contorted acene ribbons for stable and ultrasensitive neural probes.
Sci Adv. 2025 Apr 4;11(14):eadu2356. doi: 10.1126/sciadv.adu2356. Epub 2025 Apr 2.
4
Recent Advances in the Tunable Optoelectromagnetic Properties of PEDOTs.
Molecules. 2025 Jan 4;30(1):179. doi: 10.3390/molecules30010179.
5
Kinetics and Retention of Polystyrenesulfonate for Proteoglycan Replacement in Cartilage.
Biomacromolecules. 2024 Sep 9;25(9):5819-5833. doi: 10.1021/acs.biomac.4c00479. Epub 2024 Aug 14.
7
One Pot Photomediated Formation of Electrically Conductive Hydrogels.
ACS Polym Au. 2023 Dec 8;4(1):34-44. doi: 10.1021/acspolymersau.3c00031. eCollection 2024 Feb 14.
8
Organic Electrochemical Transistors for Biomarker Detections.
Adv Sci (Weinh). 2024 Jul;11(27):e2305347. doi: 10.1002/advs.202305347. Epub 2024 Jan 23.

本文引用的文献

1
Tailoring Polymer Dispersity in Photoinduced Iron-Catalyzed ATRP.
ACS Macro Lett. 2020 Apr 21;9(4):459-463. doi: 10.1021/acsmacrolett.0c00121. Epub 2020 Mar 16.
2
Control of Dispersity and Grafting Density of Particle Brushes by Variation of ATRP Catalyst Concentration.
ACS Macro Lett. 2019 Jul 16;8(7):859-864. doi: 10.1021/acsmacrolett.9b00405. Epub 2019 Jun 25.
3
Effect of molecular weight distribution of PSSA on electrical conductivity of PEDOT:PSS.
RSC Adv. 2019 Jan 30;9(7):4028-4034. doi: 10.1039/c8ra09919g. eCollection 2019 Jan 25.
4
Facile synthesis of highly conductive PEDOT:PSS surfactant templates.
RSC Adv. 2019 Feb 21;9(11):6363-6378. doi: 10.1039/c8ra08801b. eCollection 2019 Feb 18.
5
High-Performance Structural Supercapacitors Based on Aligned Discontinuous Carbon Fiber Electrodes and Solid Polymer Electrolytes.
ACS Appl Mater Interfaces. 2021 Mar 17;13(10):11774-11782. doi: 10.1021/acsami.0c19550. Epub 2021 Mar 8.
6
Virtual Texture Generated using Elastomeric Conductive Block Copolymer in Wireless Multimodal Haptic Glove.
Adv Intell Syst. 2020 Apr;2(4). doi: 10.1002/aisy.202000018. Epub 2020 Feb 25.
7
Low-Impedance 3D PEDOT:PSS Ultramicroelectrodes.
Front Neurosci. 2020 May 19;14:405. doi: 10.3389/fnins.2020.00405. eCollection 2020.
8
Organic mixed ionic-electronic conductors.
Nat Mater. 2020 Jan;19(1):13-26. doi: 10.1038/s41563-019-0435-z. Epub 2019 Aug 19.
9
Conducting and Stretchable PEDOT:PSS Electrodes: Role of Additives on Self-Assembly, Morphology, and Transport.
ACS Appl Mater Interfaces. 2019 May 15;11(19):17570-17582. doi: 10.1021/acsami.9b00934. Epub 2019 Apr 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验