Suppr超能文献

低阻抗3D聚(3,4-乙撑二氧噻吩):聚苯乙烯磺酸盐超微电极

Low-Impedance 3D PEDOT:PSS Ultramicroelectrodes.

作者信息

Jones Peter D, Moskalyuk Anastasiya, Barthold Clemens, Gutöhrlein Katja, Heusel Gerhard, Schröppel Birgit, Samba Ramona, Giugliano Michele

机构信息

Natural and Medical Sciences Institute (NMI) at the University of Tübingen, Reutlingen, Germany.

Theoretical Neurobiology & Neuroengineering, University of Antwerp, Antwerp, Belgium.

出版信息

Front Neurosci. 2020 May 19;14:405. doi: 10.3389/fnins.2020.00405. eCollection 2020.

Abstract

The technology for producing microelectrode arrays (MEAs) has been developing since the 1970s and extracellular electrophysiological recordings have become well established in neuroscience, drug screening and cardiology. MEAs allow monitoring of long-term spiking activity of large ensembles of excitable cells noninvasively with high temporal resolution and mapping its spatial features. However, their inability to register subthreshold potentials, such as intrinsic membrane oscillations and synaptic potentials, has inspired a number of laboratories to search for alternatives to bypass the restrictions and/or increase the sensitivity of microelectrodes. In this study, we present the fabrication and experimental validation of arrays of PEDOT:PSS-coated 3D ultramicroelectrodes, with the best-reported combination of small size and low electrochemical impedance. We observed that this type of microelectrode does not alter neuronal network biological properties, improves the signal quality of extracellular recordings and exhibits higher selectivity toward single unit recordings. With fabrication processes simpler than those reported in the literature for similar electrodes, our technology is a promising tool for study of neuronal networks.

摘要

自20世纪70年代以来,微电极阵列(MEA)的制造技术一直在发展,细胞外电生理记录在神经科学、药物筛选和心脏病学领域已得到广泛应用。MEA能够以高时间分辨率对大量可兴奋细胞的长期放电活动进行无创监测,并绘制其空间特征。然而,它们无法记录阈下电位,如固有膜振荡和突触电位,这促使许多实验室寻找替代方法来绕过这些限制和/或提高微电极的灵敏度。在本研究中,我们展示了聚3,4-乙撑二氧噻吩:聚苯乙烯磺酸盐(PEDOT:PSS)涂层的3D超微电极阵列的制造及实验验证,该阵列具有已报道的最佳尺寸小和电化学阻抗低的组合。我们观察到,这种类型的微电极不会改变神经网络的生物学特性,提高了细胞外记录的信号质量,并且对单个单元记录表现出更高的选择性。由于我们的制造工艺比文献中报道的类似电极的工艺更简单,我们的技术是研究神经网络的一个有前途的工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2990/7248397/021f5657b4af/fnins-14-00405-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验