Department of Quantitative Biomedicine, University of Zurichgrid.7400.3, Zurich, Switzerland.
Department of Evolutionary Biology and Environmental Studies, University of Zurichgrid.7400.3, Zurich, Switzerland.
mSystems. 2022 Oct 26;7(5):e0035422. doi: 10.1128/msystems.00354-22. Epub 2022 Oct 3.
Pseudomonas aeruginosa populations evolving in cystic fibrosis lungs, animal hosts, natural environments and in vitro undergo extensive genetic adaption and diversification. A common mutational target is the quorum sensing (QS) system, a three-unit regulatory system that controls the expression of virulence factors and secreted public goods. Three evolutionary scenarios have been advocated to explain selection for QS mutants: (i) disuse of the regulon, (ii) cheating through the exploitation of public goods, or (ii) modulation of the QS regulon. Here, we examine these scenarios by studying a set of 61 QS mutants from an experimental evolution study. We observed nonsynonymous mutations in all three QS systems: Las, Rhl, and Pseudomonas Quinolone Signal (PQS). The majority of the Las mutants had large deletions of the Las regulon, resulting in loss of QS function and the inability to produce QS-regulated traits, thus supporting the first or second scenarios. Conversely, phenotypic and gene expression analyses of Rhl mutants support network modulation (third scenario), as these mutants overexpressed the Las and Rhl receptors and showed an altered QS-regulated trait production profile. PQS mutants also showed patterns of regulon modulation leading to strain diversification and phenotypic tradeoffs, where the upregulation of certain QS traits is associated with the downregulation of others. Overall, our results indicate that mutations in the different QS systems lead to diverging effects on the QS trait profile in P. aeruginosa populations. These mutations might not only affect the plasticity and diversity of evolved populations but could also impact bacterial fitness and virulence in infections. Pseudomonas aeruginosa uses quorum sensing (QS), a three-unit multilayered network, to coordinate expression of traits required for growth and virulence in the context of infections. Despite its importance for bacterial fitness, the QS regulon appears to be a common mutational target during long-term adaptation of P. aeruginosa in the host, natural environments, and experimental evolutions. This raises questions of why such an important regulatory system is under selection and how mutations change the profile of QS-regulated traits. Here, we examine a set of 61 experimentally evolved QS mutants to address these questions. We found that mutations involving the master regulator, LasR, resulted in an almost complete breakdown of QS, while mutations in RhlR and PqsR resulted in modulations of the regulon, where both the regulon structure and the QS-regulated trait profile changed. Our work reveals that natural selection drives diversification in QS activity patterns in evolving populations.
铜绿假单胞菌在囊性纤维化肺、动物宿主、自然环境中和体外经历了广泛的遗传适应和多样化。一个常见的突变靶标是群体感应 (QS) 系统,这是一个三单元调节系统,控制毒力因子和分泌公共物品的表达。已经提出了三种进化情景来解释 QS 突变体的选择:(i)调控子的失用,(ii)通过利用公共物品进行欺骗,或(iii)QS 调控子的调制。在这里,我们通过研究来自实验进化研究的一组 61 个 QS 突变体来检查这些情景。我们观察到 Las、Rhl 和 Pseudomonas Quinolone Signal (PQS) 三个 QS 系统中的所有非同义突变。大多数 Las 突变体有 Las 调控子的大片段缺失,导致 QS 功能丧失和无法产生 QS 调节的特征,因此支持第一种或第二种情况。相反,Rhl 突变体的表型和基因表达分析支持网络调制(第三种情况),因为这些突变体过表达了 Las 和 Rhl 受体,并表现出改变的 QS 调节特征产生谱。PQS 突变体也显示出调节子调制导致菌株多样化和表型权衡的模式,其中某些 QS 特征的上调与其他特征的下调相关。总体而言,我们的结果表明,不同 QS 系统中的突变导致铜绿假单胞菌群体中 QS 特征谱的不同影响。这些突变不仅可能影响进化种群的可塑性和多样性,而且可能影响感染中的细菌适应性和毒力。 铜绿假单胞菌使用群体感应 (QS),这是一个三单元多层网络,用于协调感染过程中生长和毒力所需特征的表达。尽管 QS 对细菌适应性很重要,但在铜绿假单胞菌在宿主、自然环境和实验进化中长期适应过程中,QS 调控子似乎是一个常见的突变靶标。这引发了一个问题,即为什么这样一个重要的调节系统受到选择,以及突变如何改变 QS 调节特征的特征。在这里,我们检查了一组 61 个经过实验进化的 QS 突变体来解决这些问题。我们发现涉及主调节剂 LasR 的突变导致 QS 几乎完全崩溃,而 RhlR 和 PqsR 中的突变导致调控子的调制,其中调控子结构和 QS 调节特征谱都发生了变化。我们的工作表明,自然选择驱动了进化种群中 QS 活性模式的多样化。
Microbiol Spectr. 2022-6-29
Proc Natl Acad Sci U S A. 2019-3-8
NPJ Antimicrob Resist. 2024
ISME Commun. 2024-3-28
Ann Clin Microbiol Antimicrob. 2024-4-10
Front Cell Infect Microbiol. 2023
Microbiol Spectr. 2022-6-29
NPJ Biofilms Microbiomes. 2022-2-14
Microbiol Spectr. 2022-2-23