Department of Microbiology, University of Washington, Seattle, Washington, USA.
Department of Medicine, University of Washington, Seattle, Washington, USA.
mBio. 2020 Apr 7;11(2):e00532-20. doi: 10.1128/mBio.00532-20.
The opportunistic pathogen is a leading cause of airway infection in cystic fibrosis (CF) patients. employs several hierarchically arranged and interconnected quorum sensing (QS) regulatory circuits to produce a battery of virulence factors such as elastase, phenazines, and rhamnolipids. The QS transcription factor LasR sits atop this hierarchy and activates the transcription of dozens of genes, including that encoding the QS regulator RhlR. Paradoxically, inactivating mutations are frequently observed in isolates from CF patients with chronic infections. In contrast, mutations in are rare. We have recently shown that in CF isolates, the QS circuitry is often rewired such that RhlR acts in a LasR-independent manner. To begin understanding how QS activity differs in this rewired background, we characterized QS activation and RhlR-regulated gene expression in E90, a LasR-null, RhlR-active chronic infection isolate. In this isolate, RhlR activates the expression of 53 genes in response to increasing cell density. The genes regulated by RhlR include several that encode virulence factors. Some, but not all, of these genes are present in the QS regulon described in the well-studied laboratory strain PAO1. We also demonstrate that E90 produces virulence factors at similar concentrations as PAO1, and in E90, RhlR plays a significant role in mediating cytotoxicity in a three-dimensional lung epithelium cell model. These data illuminate a rewired LasR-independent RhlR regulon in chronic infection isolates and suggest further investigation of RhlR as a possible target for therapeutic development in chronic infections. is a prominent cystic fibrosis (CF) pathogen that uses quorum sensing (QS) to regulate virulence. In laboratory strains, the key QS regulator is LasR. Many isolates from patients with chronic CF infections appear to use an alternate QS circuitry in which another transcriptional regulator, RhlR, mediates QS. We show that a LasR-null CF clinical isolate engages in QS through RhlR and remains capable of inducing cell death in an like lung epithelium cell model. Our findings support the notion that LasR-null clinical isolates can engage in RhlR QS and highlight the centrality of RhlR in chronic infections.
机会性病原体是囊性纤维化 (CF) 患者气道感染的主要原因。它利用几个层次排列和相互关联的群体感应 (QS) 调节回路来产生一系列毒力因子,如弹性蛋白酶、吩嗪和鼠李糖脂。QS 转录因子 LasR 位于这个层次结构的顶端,激活数十个基因的转录,包括编码 QS 调节剂 RhlR 的基因。矛盾的是,在 CF 患者慢性感染的分离株中经常观察到失活的突变。相比之下,突变很少见。我们最近表明,在 CF 分离株中,QS 电路经常被重新布线,使得 RhlR 以 LasR 独立的方式发挥作用。为了开始了解在这种重新布线的背景下 QS 活性有何不同,我们在 LasR 缺失但 RhlR 活跃的慢性感染分离株 E90 中表征了 QS 激活和 RhlR 调节的基因表达。在这个分离株中,RhlR 随着细胞密度的增加激活 53 个基因的表达。RhlR 调节的基因包括一些编码毒力因子的基因。这些基因中的一些,但不是全部,存在于在经过充分研究的实验室菌株 PAO1 中描述的 QS 调节子中。我们还证明 E90 以与 PAO1 相似的浓度产生毒力因子,并且在 E90 中,RhlR 在三维肺上皮细胞模型中介导细胞毒性方面发挥重要作用。这些数据阐明了慢性感染分离株中重新布线的 LasR 独立 RhlR 调节子,并表明进一步研究 RhlR 作为慢性感染治疗开发的可能靶点。是一种主要的囊性纤维化 (CF) 病原体,它利用群体感应 (QS) 来调节毒力。在实验室菌株中,关键的 QS 调节剂是 LasR。许多来自慢性 CF 感染患者的分离株似乎使用另一种 QS 电路,其中另一个转录调节剂 RhlR 介导 QS。我们表明,LasR 缺失的 CF 临床分离株通过 RhlR 参与 QS,并仍然能够在类似于肺上皮细胞的模型中诱导细胞死亡。我们的发现支持这样一种观点,即 LasR 缺失的临床分离株可以参与 RhlR QS,并强调 RhlR 在慢性感染中的核心地位。