Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University, and Key Laboratory of System Control and Information Processing, Ministry of Education of China, Shanghai, China.
Protein Sci. 2022 Dec;31(12):e4462. doi: 10.1002/pro.4462.
Knowledge of protein-ligand interactions is beneficial for biological process analysis and drug design. Given the complexity of the interactions and the inadequacy of experimental data, accurate ligand binding residue and pocket prediction remains challenging. In this study, we introduce an easy-to-use web server BindWeb for ligand-specific and ligand-general binding residue and pocket prediction from protein structures. BindWeb integrates a graph neural network GraphBind with a hybrid convolutional neural network and bidirectional long short-term memory network DELIA to identify binding residues. Furthermore, BindWeb clusters the predicted binding residues to binding pockets with mean shift clustering. The experimental results and case study demonstrate that BindWeb benefits from the complementarity of two base methods. BindWeb is freely available for academic use at http://www.csbio.sjtu.edu.cn/bioinf/BindWeb/.
蛋白质-配体相互作用的知识有利于生物过程分析和药物设计。鉴于相互作用的复杂性和实验数据的不足,准确预测配体结合残基和结合口袋仍然具有挑战性。在这项研究中,我们引入了一个易于使用的网页服务器 BindWeb,用于从蛋白质结构中预测配体特异性和配体一般性的结合残基和结合口袋。BindWeb 集成了图神经网络 GraphBind 和混合卷积神经网络和双向长短时记忆网络 DELIA 来识别结合残基。此外,BindWeb 使用均值漂移聚类将预测的结合残基聚类到结合口袋中。实验结果和案例研究表明,BindWeb 受益于两种基本方法的互补性。BindWeb 可在 http://www.csbio.sjtu.edu.cn/bioinf/BindWeb/ 上免费供学术使用。