Suppr超能文献

基于图像-词序的化合物-蛋白质相互作用预测:利用化合物的结构图像预测化合物-蛋白质相互作用。

Picture-word order compound protein interaction: Predicting compound-protein interaction using structural images of compounds.

机构信息

School of Computer Science and Technology, East China Normal University, Shanghai, China.

Drug Discovery and Design Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.

出版信息

J Comput Chem. 2022 Feb 5;43(4):255-264. doi: 10.1002/jcc.26786. Epub 2021 Nov 30.

Abstract

Identifying potential associations between proteins and compounds is significant and challenging in the drug discovery process. Existing deep-learning-based methods tend to treat compounds and proteins as sequences or graphs. Inspired by the rapid development of computer vision technology, we argue that more abundant characterizations can be extracted from the images of compounds than from their sequences or graphs. Therefore, we propose an interaction model named picture-word order compound protein interaction (PWO-CPI) which learns the representation from structural images of compounds and protein sequences by using convolutional neural network (CNN). The experiments show that PWO-CPI outperforms state-of-the-art CPI prediction models. We also perform drug-drug interaction (DDI) experiments to validate the strong potential of structural formula images of molecular structures as molecular features. In addition, with the aid of generative adversarial networks, the visualization of image features demonstrates PWO-CPI can learn compound structural features implicitly and automatically.

摘要

在药物发现过程中,识别蛋白质和化合物之间的潜在关联具有重要意义且极具挑战性。现有的基于深度学习的方法倾向于将化合物和蛋白质视为序列或图。受计算机视觉技术快速发展的启发,我们认为可以从化合物的图像中提取比从其序列或图中更丰富的特征。因此,我们提出了一种名为“图文序化合物-蛋白质相互作用(PWO-CPI)”的交互模型,该模型通过使用卷积神经网络(CNN)从化合物的结构图像和蛋白质序列中学习表示。实验表明,PWO-CPI 优于最先进的 CPI 预测模型。我们还进行了药物-药物相互作用(DDI)实验,以验证分子结构的结构式图像作为分子特征的强大潜力。此外,借助生成对抗网络,图像特征的可视化表明 PWO-CPI 可以隐式和自动学习化合物的结构特征。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验