CSIR Institute of Microbial Technology, Chandigarh, India.
Microbiol Spectr. 2022 Oct 26;10(5):e0336822. doi: 10.1128/spectrum.03368-22. Epub 2022 Oct 3.
The trace metal manganese in excess affects iron-sulfur cluster and heme-protein biogenesis, eliciting cellular toxicity. The manganese efflux protein MntP is crucial to evading manganese toxicity in bacteria. Recently, two Mn-sensing riboswitches upstream of and in Escherichia coli have been reported to mediate the upregulation of their expression under manganese shock. As the riboswitch is also responsive to alkaline shock administered externally, it is intriguing whether the riboswitch is also responsive to alkaline stress. Furthermore, how both manganese and alkaline pH simultaneously regulate these two riboswitches under physiological conditions is a puzzle. Using multiple approaches, we show that manganese shock activated glutamine synthetase (GlnA) and glutaminases (GlsA and GlsB) to spike ammonia production in E. coli. The elevated ammonia intrinsically alkalizes the cytoplasm. We establish that this alkalization under manganese stress is crucial for attaining the highest degree of riboswitch activation. Additional studies showed that alkaline pH promotes a 17- to 22-fold tighter interaction between manganese and the riboswitch element. Our study uncovers a physiological linkage between manganese efflux and pH homeostasis that mediates enhanced manganese tolerance. Riboswitch RNAs are -acting elements that can adopt alternative conformations in the presence or absence of a specific ligand(s) to modulate transcription termination or translation initiation processes. In the present work, we show that manganese and alkaline pH are both necessary for maximal riboswitch activation to mitigate the manganese toxicity. This study bridges the gap between earlier studies that separately emphasize the importance of alkaline pH and manganese in activating the riboswitches belonging to the - family. This study also ascribes a physiological relevance as to how manganese can rewire cellular physiology to render cytoplasmic pH alkaline for its homeostasis.
过量的痕量金属锰会影响铁硫簇和血红素蛋白的生物发生,从而引发细胞毒性。锰外排蛋白 MntP 对于细菌逃避锰毒性至关重要。最近,大肠杆菌中 和 上游的两个 Mn 感应核糖开关已被报道在锰冲击下调节其表达的上调。由于 核糖开关也对外加碱性冲击有反应,因此令人感兴趣的是 核糖开关是否也对碱性应激有反应。此外,在生理条件下,锰和碱性 pH 如何同时调节这两个核糖开关是一个难题。我们使用多种方法表明,锰冲击激活了谷氨酸合酶(GlnA)和谷氨酰胺酶(GlsA 和 GlsB),使大肠杆菌中的氨产量激增。升高的氨本质上使细胞质碱化。我们确定,在锰胁迫下这种碱化对于获得最高程度的核糖开关激活至关重要。进一步的研究表明,碱性 pH 促进了锰与 核糖开关元件之间 17 到 22 倍的更紧密相互作用。我们的研究揭示了锰外排和 pH 稳态之间的生理联系,这种联系介导了增强的锰耐受性。核糖开关 RNA 是 作用元件,在存在或不存在特定配体的情况下可以采用不同的构象,从而调节转录终止或翻译起始过程。在本工作中,我们表明锰和碱性 pH 都是使 核糖开关最大程度激活以减轻锰毒性所必需的。这项研究弥合了早期研究之间的差距,早期研究分别强调了碱性 pH 和锰在激活属于 家族的核糖开关方面的重要性。这项研究还归因于锰如何重新布线细胞生理学以使细胞质 pH 碱化以维持其稳态的生理相关性。