Suppr超能文献

使用新型可穿戴传感器和食物图像在实验室(模拟自由生活)膳食环境中估算能量摄入:定量和误差来源的贡献。

Energy intake estimation using a novel wearable sensor and food images in a laboratory (pseudo-free-living) meal setting: quantification and contribution of sources of error.

机构信息

Department of Electrical and Computer Engineering (ECE), The University of Alabama, Tuscaloosa, USA.

Department of Electrical and Electronic Engineering, University of Liberal Arts Bangladesh, Dhaka, Bangladesh.

出版信息

Int J Obes (Lond). 2022 Nov;46(11):2050-2057. doi: 10.1038/s41366-022-01225-w. Epub 2022 Oct 3.

Abstract

OBJECTIVES

Dietary assessment methods not relying on self-report are needed. The Automatic Ingestion Monitor 2 (AIM-2) combines a wearable camera that captures food images with sensors that detect food intake. We compared energy intake (EI) estimates of meals derived from AIM-2 chewing sensor signals, AIM-2 images, and an internet-based diet diary, with researcher conducted weighed food records (WFR) as the gold standard.

SUBJECTS/METHODS: Thirty adults wore the AIM-2 for meals self-selected from a university food court on one day in mixed laboratory and free-living conditions. Daily EI was determined from a sensor regression model, manual image analysis, and a diet diary and compared with that from WFR. A posteriori analysis identified sources of error for image analysis and WFR differences.

RESULTS

Sensor-derived EI from regression modeling (R = 0.331) showed the closest agreement with EI from WFR, followed by diet diary estimates. EI from image analysis differed significantly from that by WFR. Bland-Altman analysis showed wide limits of agreement for all three test methods with WFR, with the sensor method overestimating at lower and underestimating at higher EI. Nutritionist error in portion size estimation and irreconcilable differences in portion size between food and nutrient databases used for WFR and image analyses were the greatest contributors to image analysis and WFR differences (44.4% and 44.8% of WFR EI, respectively).

CONCLUSIONS

Estimation of daily EI from meals using sensor-derived features offers a promising alternative to overcome limitations of self-report. Image analysis may benefit from computerized analytical procedures to reduce identified sources of error.

摘要

目的

需要不依赖于自我报告的饮食评估方法。自动摄取监测器 2(AIM-2)结合了一个可穿戴的摄像头,可拍摄食物图像,以及可检测食物摄入量的传感器。我们将源自 AIM-2 咀嚼传感器信号、AIM-2 图像和基于互联网的饮食日记的膳食能量摄入(EI)估计值与研究人员进行的称重食物记录(WFR)进行了比较,后者是金标准。

受试者/方法:30 位成年人在混合实验室和自由生活条件下的一天中,从大学美食广场自选食物佩戴 AIM-2 设备。通过传感器回归模型、手动图像分析和饮食日记确定每日 EI,并与 WFR 进行比较。事后分析确定了图像分析和 WFR 差异的误差源。

结果

回归建模得出的传感器衍生 EI(R=0.331)与 WFR 的 EI 最接近,其次是饮食日记的估计值。图像分析得出的 EI 与 WFR 有显著差异。Bland-Altman 分析显示,所有三种测试方法与 WFR 的一致性都较差,传感器方法在 EI 较低时高估,在 EI 较高时低估。营养师在估计食物份量方面的错误以及 WFR 和图像分析中用于食物和营养素数据库的份量不可调和的差异是造成图像分析和 WFR 差异的最大原因(分别占 WFR EI 的 44.4%和 44.8%)。

结论

使用源自传感器的特征来估计每日 EI 是克服自我报告局限性的一种很有前途的替代方法。图像分析可能受益于计算机分析程序,以减少已识别的误差源。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验