Suppr超能文献

通过咀嚼和吞咽次数估算能量摄入。

Energy intake estimation from counts of chews and swallows.

作者信息

Fontana Juan M, Higgins Janine A, Schuckers Stephanie C, Bellisle France, Pan Zhaoxing, Melanson Edward L, Neuman Michael R, Sazonov Edward

机构信息

Electrical and Computer Engineering Department, The University of Alabama, Tuscaloosa, AL 35487, United States.

Department of Pediatrics, University of Colorado Anschutz Medical Center, Aurora, CO 80045, United States.

出版信息

Appetite. 2015 Feb;85:14-21. doi: 10.1016/j.appet.2014.11.003. Epub 2014 Nov 7.

Abstract

Current, validated methods for dietary assessment rely on self-report, which tends to be inaccurate, time-consuming, and burdensome. The objective of this work was to demonstrate the suitability of estimating energy intake using individually-calibrated models based on Counts of Chews and Swallows (CCS models). In a laboratory setting, subjects consumed three identical meals (training meals) and a fourth meal with different content (validation meal). Energy intake was estimated by four different methods: weighed food records (gold standard), diet diaries, photographic food records, and CCS models. Counts of chews and swallows were measured using wearable sensors and video analysis. Results for the training meals demonstrated that CCS models presented the lowest reporting bias and a lower error as compared to diet diaries. For the validation meal, CCS models showed reporting errors that were not different from the diary or the photographic method. The increase in error for the validation meal may be attributed to differences in the physical properties of foods consumed during training and validation meals. However, this may be potentially compensated for by including correction factors into the models. This study suggests that estimation of energy intake from CCS may offer a promising alternative to overcome limitations of self-report.

摘要

目前,经过验证的膳食评估方法依赖于自我报告,而自我报告往往不准确、耗时且繁琐。这项工作的目的是证明基于咀嚼和吞咽次数(CCS模型)的个体校准模型用于估计能量摄入的适用性。在实验室环境中,受试者食用了三顿相同的餐食(训练餐)和一顿内容不同的第四餐(验证餐)。通过四种不同的方法估计能量摄入:称重食物记录(金标准)、饮食日记、照片食物记录和CCS模型。使用可穿戴传感器和视频分析来测量咀嚼和吞咽次数。训练餐的结果表明,与饮食日记相比,CCS模型的报告偏差最低且误差较小。对于验证餐,CCS模型显示的报告误差与日记法或照片法无异。验证餐误差的增加可能归因于训练餐和验证餐期间所食用食物的物理特性差异。然而,这可能通过在模型中纳入校正因子来潜在地弥补。这项研究表明,通过CCS估计能量摄入可能为克服自我报告的局限性提供一种有前景的替代方法。

相似文献

1
Energy intake estimation from counts of chews and swallows.通过咀嚼和吞咽次数估算能量摄入。
Appetite. 2015 Feb;85:14-21. doi: 10.1016/j.appet.2014.11.003. Epub 2014 Nov 7.
7
Effect of chewing rate on meal intake.咀嚼速度对进餐量的影响。
Eur J Oral Sci. 2019 Feb;127(1):40-44. doi: 10.1111/eos.12583. Epub 2018 Oct 31.

引用本文的文献

6
Clinical assessment for diet prescription.临床饮食处方评估。
J Prev Med Hyg. 2022 Oct 17;63(2 Suppl 3):E102-E124. doi: 10.15167/2421-4248/jpmh2022.63.2S3.2753. eCollection 2022 Jun.
9
Automatic Count of Bites and Chews From Videos of Eating Episodes.通过进食片段视频自动计数咬嚼次数
IEEE Access. 2020;8:101934-101945. doi: 10.1109/access.2020.2998716. Epub 2020 Jun 1.
10
Comparison of wearable sensors for estimation of chewing strength.用于估计咀嚼力量的可穿戴传感器的比较。
IEEE Sens J. 2020 May 15;20(10):5379-5388. doi: 10.1109/jsen.2020.2968009. Epub 2020 Jan 20.

本文引用的文献

3
Measuring food intake with digital photography.利用数码摄影测量食物摄入量。
J Hum Nutr Diet. 2014 Jan;27 Suppl 1(0 1):72-81. doi: 10.1111/jhn.12014. Epub 2013 Jul 15.
4
Automatic food intake detection based on swallowing sounds.基于吞咽声音的自动食物摄入量检测。
Biomed Signal Process Control. 2012 Nov 1;7(6):649-656. doi: 10.1016/j.bspc.2012.03.005. Epub 2012 Apr 6.
10
Need for technological innovation in dietary assessment.饮食评估中技术创新的必要性。
J Am Diet Assoc. 2010 Jan;110(1):48-51. doi: 10.1016/j.jada.2009.10.008.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验