Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA.
Department of Psychology, University of Oregon, Eugene, OR, USA.
Commun Biol. 2022 Oct 3;5(1):1048. doi: 10.1038/s42003-022-03655-8.
Human behavior is embedded in social networks. Certain characteristics of the positions that people occupy within these networks appear to be stable within individuals. Such traits likely stem in part from individual differences in how people tend to think and behave, which may be driven by individual differences in the neuroanatomy supporting socio-affective processing. To investigate this possibility, we reconstructed the full social networks of three graduate student cohorts (N = 275; N = 279; N = 285), a subset of whom (N = 112) underwent diffusion magnetic resonance imaging. Although no single tract in isolation appears to be necessary or sufficient to predict social network characteristics, distributed patterns of white matter microstructural integrity in brain networks supporting social and affective processing predict eigenvector centrality (how well-connected someone is to well-connected others) and brokerage (how much one connects otherwise unconnected others). Thus, where individuals sit in their real-world social networks is reflected in their structural brain networks. More broadly, these results suggest that the application of data-driven methods to neuroimaging data can be a promising approach to investigate how brains shape and are shaped by individuals' positions in their real-world social networks.
人类行为嵌入在社交网络中。人们在这些网络中所处的位置的某些特征在个体内部似乎是稳定的。这些特征可能部分源于人们思考和行为方式的个体差异,而这些差异可能是由支持社交情感处理的神经解剖结构的个体差异驱动的。为了研究这种可能性,我们重建了三个研究生队列的完整社交网络(N=275;N=279;N=285),其中一部分(N=112)接受了弥散磁共振成像。尽管没有单一的束在孤立的情况下似乎是必要的或充分的预测社会网络特征,但支持社交和情感处理的脑网络中的白质微观结构完整性的分布式模式预测特征向量中心度(某人与连接良好的其他人的连接程度)和经纪人(一个人连接多少原本没有联系的其他人)。因此,个体在现实世界社交网络中的位置反映在他们的结构脑网络中。更广泛地说,这些结果表明,将数据驱动的方法应用于神经影像学数据可能是一种很有前途的方法,可以研究大脑如何塑造和被个体在现实世界社交网络中的位置所塑造。