Suppr超能文献

新型社交网络的神经编码:感知者优先考虑他人中心度的证据。

Neural encoding of novel social networks: evidence that perceivers prioritize others' centrality.

机构信息

Department of Psychology, University of California, Los Angeles, CA 90095, USA.

Silver School of Social Work, New York University, New York, NY 10003, USA.

出版信息

Soc Cogn Affect Neurosci. 2023 Feb 23;18(1). doi: 10.1093/scan/nsac059.

Abstract

Knowledge of someone's friendships can powerfully impact how one interacts with them. Previous research suggests that information about others' real-world social network positions-e.g. how well-connected they are (centrality), 'degrees of separation' (relative social distance)-is spontaneously encoded when encountering familiar individuals. However, many types of information covary with where someone sits in a social network. For instance, strangers' face-based trait impressions are associated with their social network centrality, and social distance and centrality are inherently intertwined with familiarity, interpersonal similarity and memories. To disentangle the encoding of the social network position from other social information, participants learned a novel social network in which the social network position was decoupled from other factors and then saw each person's image during functional magnetic resonance imaging scanning. Using representational similarity analysis, we found that social network centrality was robustly encoded in regions associated with visual attention and mentalizing. Thus, even when considering a social network in which one is not included and where centrality is unlinked from perceptual and experience-based features to which it is inextricably tied in naturalistic contexts, the brain encodes information about others' importance in that network, likely shaping future perceptions of and interactions with those individuals.

摘要

关于他人真实社交网络位置的信息(例如,他们的连接度如何(中心度)、“分离程度”(相对社交距离)),当遇到熟悉的人时,会自动对其进行编码。然而,许多类型的信息与一个人在社交网络中的位置相关。例如,陌生人基于面部的特征印象与他们的社交网络中心度有关,社交距离和中心度与熟悉程度、人际相似性和记忆交织在一起。为了将社交网络位置的编码与其他社交信息区分开来,参与者学习了一个新的社交网络,其中社交网络位置与其他因素分离,然后在功能磁共振成像扫描期间看到每个人的图像。使用表示相似性分析,我们发现社交网络中心度在与视觉注意力和心理化相关的区域中得到了强有力的编码。因此,即使考虑到一个不包括自己且中心度与自然情境中与之紧密相关的感知和基于经验的特征脱钩的社交网络,大脑也会对他人在该网络中的重要性进行编码,这可能会影响未来对这些个体的感知和互动。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6828/9949589/92a2e396d69c/nsac059f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验