Christov-Moore Leonardo, Reggente Nicco, Douglas Pamela K, Feusner Jamie D, Iacoboni Marco
Ahmanson-Lovelace Brain Mapping Center, University of California, Los Angeles, Los Angeles, CA, United States.
Brain Research Institute, University of California, Los Angeles, Los Angeles, CA, United States.
Front Integr Neurosci. 2020 Feb 14;14:3. doi: 10.3389/fnint.2020.00003. eCollection 2020.
Recent task fMRI studies suggest that individual differences in trait empathy and empathic concern are mediated by patterns of connectivity between self-other resonance and top-down control networks that are stable across task demands. An untested implication of this hypothesis is that these stable patterns of connectivity should be visible even in the absence of empathy tasks. Using machine learning, we demonstrate that patterns of (i.e. the degree of synchronous BOLD activity across multiple cortical areas in the absence of explicit task demands) of resonance and control networks predict trait empathic concern ( = 58). Empathic concern was also predicted by connectivity patterns within the somatomotor network. These findings further support the role of resonance-control network interactions and of somatomotor function in our vicariously driven concern for others. Furthermore, a practical implication of these results is that it is possible to assess empathic predispositions in individuals without needing to perform conventional empathy assessments.
最近的任务功能磁共振成像研究表明,特质共情和共情关注的个体差异是由自我-他人共鸣与自上而下控制网络之间的连接模式介导的,这些连接模式在不同任务需求下是稳定的。该假设一个未经检验的推论是,即使在没有共情任务的情况下,这些稳定的连接模式也应该是可见的。我们使用机器学习证明,共鸣和控制网络的静息态功能连接模式(即在没有明确任务需求的情况下,多个皮质区域之间的同步血氧水平依赖活动程度)能够预测特质共情关注(n = 58)。躯体运动网络内的连接模式也能预测共情关注。这些发现进一步支持了共鸣-控制网络相互作用以及躯体运动功能在我们对他人的替代性驱动关注中的作用。此外,这些结果的一个实际意义是,无需进行传统的共情评估就有可能评估个体的共情倾向。