Suppr超能文献

仿生微流控氧合器的多层缩放。

Multilayer Scaling of a Biomimetic Microfluidic Oxygenator.

机构信息

From the Draper, Cambridge, Massachusetts.

Autonomous Reanimation and Evacuation (AREVA) Research Program, The Geneva Foundation, San Antonio, Texas.

出版信息

ASAIO J. 2022 Oct 1;68(10):1312-1319. doi: 10.1097/MAT.0000000000001647. Epub 2022 Jan 12.

Abstract

Extracorporeal membrane oxygenation (ECMO) has been advancing rapidly due to a combination of rising rates of acute and chronic lung diseases as well as significant improvements in the safety and efficacy of this therapeutic modality. However, the complexity of the ECMO blood circuit, and challenges with regard to clotting and bleeding, remain as barriers to further expansion of the technology. Recent advances in microfluidic fabrication techniques, devices, and systems present an opportunity to develop new solutions stemming from the ability to precisely maintain critical dimensions such as gas transfer membrane thickness and blood channel geometries, and to control levels of fluid shear within narrow ranges throughout the cartridge. Here, we present a physiologically inspired multilayer microfluidic oxygenator device that mimics physiologic blood flow patterns not only within individual layers but throughout a stacked device. Multiple layers of this microchannel device are integrated with a three-dimensional physiologically inspired distribution manifold that ensures smooth flow throughout the entire stacked device, including the critical entry and exit regions. We then demonstrate blood flows up to 200 ml/min in a multilayer device, with oxygen transfer rates capable of saturating venous blood, the highest of any microfluidic oxygenator, and a maximum blood flow rate of 480 ml/min in an eight-layer device, higher than any yet reported in a microfluidic device. Hemocompatibility and large animal studies utilizing these prototype devices are planned. Supplemental Visual Abstract, http://links.lww.com/ASAIO/A769.

摘要

体外膜肺氧合(ECMO)技术由于急性和慢性肺部疾病的发病率上升,以及这种治疗方式的安全性和疗效显著提高,得到了快速发展。然而,ECMO 血液回路的复杂性以及与凝血和出血相关的挑战仍然是该技术进一步发展的障碍。微流控制造技术、装置和系统的最新进展为开发新的解决方案提供了机会,这源于能够精确维持关键尺寸(如气体传输膜厚度和血液通道几何形状)的能力,以及在整个微流控芯片内狭窄范围内控制流体剪切水平的能力。在这里,我们提出了一种受生理启发的多层微流控氧合器装置,该装置不仅在各个层内,而且在堆叠装置中都模拟了生理血流模式。该微通道装置的多层与三维受生理启发的分配歧管集成在一起,可确保整个堆叠装置(包括关键的入口和出口区域)内的平稳流动。然后,我们在多层装置中展示了高达 200ml/min 的血液流动,其氧转移率能够使静脉血饱和,这是所有微流控氧合器中最高的,在 8 层装置中的最大血液流速为 480ml/min,高于任何已报道的微流控装置。计划利用这些原型装置进行血液相容性和大动物研究。补充可视化摘要,http://links.lww.com/ASAIO/A769.

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3723/9521578/19095ba68065/mat-68-1312-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验