Suppr超能文献

一种具有高气透过率的微流控呼吸辅助装置,用于人工肺应用。

A microfluidic respiratory assist device with high gas permeance for artificial lung applications.

机构信息

Charles Stark Draper Laboratory, Cambridge, MA, USA.

出版信息

Biomed Microdevices. 2011 Apr;13(2):315-23. doi: 10.1007/s10544-010-9495-1.

Abstract

One of the principal challenges in artificial lung technology has been the ability to provide levels of oxygen and carbon dioxide exchange that rival those of the natural human lung, while mitigating the deleterious interaction between blood and the surface of the synthetic gas exchange membrane. This interaction is exacerbated by the large oxygenator surface area required to achieve sufficient levels of gas transfer. In an effort to address this challenge, microfluidics-based artificial lung technologies comprising stacked microchannel networks have been explored by several groups. Here we report the design, fabrication and initial testing of a parallel plate multilayered silicone-based microfluidic construct containing ultrathin gas exchange membranes, aimed at maximizing gas transfer efficiency while minimizing membrane-blood contact area. The device comprises a branched microvascular network that provides controlled wall shear stress and uniform blood flow, and is designed to minimize blood damage, thrombosis and inflammatory responses seen in current oxygenators. Initial testing indicates that flow distribution through the multilayer structure is uniform and that the thin membrane can withstand pressures equivalent to those expected during operation. Oxygen transfer using phosphate buffered saline as the carrier fluid has also been assessed, demonstrating a sharp increase in oxygen transfer as membrane thickness is reduced, consistent with the expected values of oxygen permeance for thin silicone membranes.

摘要

人工肺技术的主要挑战之一是提供能够与天然人肺相媲美的氧气和二氧化碳交换水平,同时减轻血液与合成气体交换膜表面之间的有害相互作用。为了实现足够的气体转移水平,需要大量的氧气浓缩器表面积,从而加剧了这种相互作用。为了应对这一挑战,一些研究小组探索了基于微流控技术的人工肺技术,包括堆叠的微通道网络。在这里,我们报告了一种设计、制造和初步测试的基于平行板多层硅基微流控结构的设备,该设备包含超薄的气体交换膜,旨在最大限度地提高气体转移效率,同时最小化膜与血液的接触面积。该设备包括一个分支的微血管网络,提供受控的壁面切应力和均匀的血流,旨在最大限度地减少当前氧气浓缩器中出现的血液损伤、血栓形成和炎症反应。初步测试表明,通过多层结构的流量分布是均匀的,并且薄的膜可以承受操作过程中预期的压力。使用磷酸盐缓冲盐水作为载流液的氧气转移也进行了评估,结果表明,随着膜厚度的减小,氧气转移急剧增加,与薄的硅树脂膜的氧气渗透率的预期值一致。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验