Suppr超能文献

量子限域高熵镧系氧硫化物胶体纳米晶体

Quantum Confined High-Entropy Lanthanide Oxysulfide Colloidal Nanocrystals.

作者信息

Ward-O'Brien Brendan, McNaughter Paul D, Cai Rongsheng, Chattopadhyay Amrita, Flitcroft Joseph M, Smith Charles T, Binks David J, Skelton Jonathan M, Haigh Sarah J, Lewis David J

机构信息

Department of Materials, University of Manchester, Oxford Road, Manchester M13 9PL, U.K.

Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, U.K.

出版信息

Nano Lett. 2022 Oct 26;22(20):8045-8051. doi: 10.1021/acs.nanolett.2c01596. Epub 2022 Oct 4.

Abstract

We have synthesized the first reported example of quantum confined high-entropy (HE) nanoparticles, using the lanthanide oxysulfide, LnSO, system as the host phase for an equimolar mixture of Pr, Nd, Gd, Dy, and Er. A uniform HE phase was achieved the simultaneous thermolysis of a mixture of lanthanide dithiocarbamate precursors in solution. This was confirmed by powder X-ray diffraction and high-resolution scanning transmission electron microscopy, with energy dispersive X-ray spectroscopic mapping confirming the uniform distribution of the lanthanides throughout the particles. The nanoparticle dispersion displayed a significant blue shift in the absorption and photoluminescence spectra relative to our previously reported bulk sample with the same composition, with an absorption edge at 330 nm and a λ at 410 nm compared to the absorption edge at 500 nm and a λ at 450 nm in the bulk, which is indicative of quantum confinement. We support this postulate with experimental and theoretical analysis of the bandgap energy as a function of strain and surface effects (ligand binding) as well as calculation of the exciton Bohr radiii of the end member compounds.

摘要

我们合成了首个报道的量子限域高熵(HE)纳米颗粒实例,使用氧硫化镧(LnSO)体系作为镨(Pr)、钕(Nd)、钆(Gd)、镝(Dy)和铒(Er)等摩尔混合物的主体相。通过溶液中镧系二硫代氨基甲酸盐前体混合物的同步热解,实现了均匀的HE相。粉末X射线衍射和高分辨率扫描透射电子显微镜证实了这一点,能量色散X射线光谱映射证实了镧系元素在整个颗粒中的均匀分布。相对于我们之前报道的具有相同组成的块状样品,纳米颗粒分散体在吸收光谱和光致发光光谱中显示出显著的蓝移,块状样品的吸收边缘在500 nm,λ在450 nm,而纳米颗粒分散体的吸收边缘在330 nm,λ在410 nm,这表明存在量子限域效应。我们通过对带隙能量作为应变和表面效应(配体结合)函数的实验和理论分析以及对端元化合物激子玻尔半径的计算,支持了这一假设。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/06ca/9614967/32cf178637ba/nl2c01596_0001.jpg

相似文献

1
Quantum Confined High-Entropy Lanthanide Oxysulfide Colloidal Nanocrystals.
Nano Lett. 2022 Oct 26;22(20):8045-8051. doi: 10.1021/acs.nanolett.2c01596. Epub 2022 Oct 4.
2
Synthesis of High Entropy Lanthanide Oxysulfides via the Thermolysis of a Molecular Precursor Cocktail.
J Am Chem Soc. 2021 Dec 29;143(51):21560-21566. doi: 10.1021/jacs.1c08995. Epub 2021 Dec 18.
5
Optical-Quality Thin Films with Tunable Thickness from Stable Colloidal Suspensions of Lanthanide Oxysulfide Nanoplates.
Langmuir. 2023 Jan 17;39(2):728-738. doi: 10.1021/acs.langmuir.2c02026. Epub 2022 Dec 30.
10
Photoluminescence of Visible and NIR-Emitting Lanthanide-Doped Bismuth-Organic Materials.
Chemistry. 2018 Apr 11;24(21):5630-5636. doi: 10.1002/chem.201706143. Epub 2018 Mar 13.

引用本文的文献

1
Nanotechnology-based mRNA vaccines.
Nat Rev Methods Primers. 2023;3(1). doi: 10.1038/s43586-023-00246-7. Epub 2023 Aug 17.
3
Improving CO Oxidation Catalysis Over High Entropy Spinels by Increasing Disorder.
Adv Sci (Weinh). 2025 Apr;12(15):e2413424. doi: 10.1002/advs.202413424. Epub 2025 Feb 20.
4
High Entropy Oxides: Mapping the Landscape from Fundamentals to Future Vistas: Focus Review.
ACS Energy Lett. 2024 Jul 5;9(8):3694-3718. doi: 10.1021/acsenergylett.4c01129. eCollection 2024 Aug 9.
5
Colloidal Nanoparticles of High Entropy Materials: Capabilities, Challenges, and Opportunities in Synthesis and Characterization.
ACS Nanosci Au. 2023 Nov 16;4(1):3-20. doi: 10.1021/acsnanoscienceau.3c00049. eCollection 2024 Feb 21.
6
Synthetic Strategies toward High Entropy Materials: Atoms-to-Lattices for Maximum Disorder.
Cryst Growth Des. 2023 Aug 31;23(10):6998-7009. doi: 10.1021/acs.cgd.3c00712. eCollection 2023 Oct 4.

本文引用的文献

1
High entropy metal chalcogenides: synthesis, properties, applications and future directions.
Chem Commun (Camb). 2022 Jul 19;58(58):8025-8037. doi: 10.1039/d2cc01796b.
2
A molecular precursor route to quaternary chalcogenide CFTS (CuFeSnS) powders as potential solar absorber materials.
RSC Adv. 2019 Aug 5;9(42):24146-24153. doi: 10.1039/c9ra02926e. eCollection 2019 Aug 2.
3
High-entropy nanoparticles: Synthesis-structure-property relationships and data-driven discovery.
Science. 2022 Apr 8;376(6589):eabn3103. doi: 10.1126/science.abn3103.
4
Synthesis of High Entropy Lanthanide Oxysulfides via the Thermolysis of a Molecular Precursor Cocktail.
J Am Chem Soc. 2021 Dec 29;143(51):21560-21566. doi: 10.1021/jacs.1c08995. Epub 2021 Dec 18.
5
Semiconductor quantum dots: Technological progress and future challenges.
Science. 2021 Aug 6;373(6555). doi: 10.1126/science.aaz8541. Epub 2021 Aug 5.
6
2D High-Entropy Transition Metal Dichalcogenides for Carbon Dioxide Electrocatalysis.
Adv Mater. 2021 Aug;33(31):e2100347. doi: 10.1002/adma.202100347. Epub 2021 Jun 26.
7
High-Entropy 2D Carbide MXenes: TiVNbMoC and TiVCrMoC.
ACS Nano. 2021 Aug 24;15(8):12815-12825. doi: 10.1021/acsnano.1c02775. Epub 2021 Jun 15.
8
Dithiocarbamate Complexes as Single Source Precursors to Nanoscale Binary, Ternary and Quaternary Metal Sulfides.
Chem Rev. 2021 May 26;121(10):6057-6123. doi: 10.1021/acs.chemrev.0c01183. Epub 2021 Apr 13.
9
High-entropy-stabilized chalcogenides with high thermoelectric performance.
Science. 2021 Feb 19;371(6531):830-834. doi: 10.1126/science.abe1292.
10
Simultaneous Multication Exchange Pathway to High-Entropy Metal Sulfide Nanoparticles.
J Am Chem Soc. 2021 Jan 20;143(2):1017-1023. doi: 10.1021/jacs.0c11384. Epub 2021 Jan 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验