Suppr超能文献

用于旋转机械故障诊断的无监督简单暹罗框架及未标记样本

Self-Supervised Simple Siamese Framework for Fault Diagnosis of Rotating Machinery With Unlabeled Samples.

作者信息

Wan Wenqing, Chen Jinglong, Zhou Zitong, Shi Zhen

出版信息

IEEE Trans Neural Netw Learn Syst. 2024 May;35(5):6380-6392. doi: 10.1109/TNNLS.2022.3209332. Epub 2024 May 2.

Abstract

Fault diagnosis is vital to ensuring the security of rotating machinery operations. While fault data obtained from mechanical equipment for this issue are often insufficient and of no labels. In this case, supervised algorithms cannot come into play. Hence, this article proposes a self-supervised simple Siamese framework (SSF) for bearing fault diagnosis based on the contrastive learning algorithm SimSiam which uses a simplified Siamese network to find the distinguishable features of different fault categories. SSF consists of a weight-sharing encoder applied on two inputs, a nonlinear predictor and a linear classifier. SSF learns invariant characteristics of fault samples via maximizing the similarity between two views of each inputted sample. Several data augmentation (DA) methods for vibration signals, which provide different sample views for the model, are also studied, for it is crucial for contrastive learning. After fine-tuning the learned encoder and a linear layer classifier with a small subset of labeled data (1%-5% of the total samples), the network achieves satisfactory performance for bearing fault diagnosis. A series of experiments based on the data from three different scenarios are used to verify the proposed methods, getting 100%, 99.38%, and 98.87% accuracy separately.

摘要

故障诊断对于确保旋转机械运行的安全性至关重要。然而,从机械设备获取的用于此问题的故障数据往往不足且无标签。在这种情况下,监督算法无法发挥作用。因此,本文基于对比学习算法SimSiam提出了一种用于轴承故障诊断的自监督简单孪生框架(SSF),该算法使用简化的孪生网络来寻找不同故障类别的可区分特征。SSF由应用于两个输入的权重共享编码器、非线性预测器和线性分类器组成。SSF通过最大化每个输入样本的两个视图之间的相似性来学习故障样本的不变特征。还研究了几种用于振动信号的数据增强(DA)方法,这些方法为模型提供不同的样本视图,因为这对于对比学习至关重要。在用一小部分标记数据(占总样本的1%-5%)对学习到的编码器和线性层分类器进行微调后,该网络在轴承故障诊断方面取得了令人满意的性能。基于来自三种不同场景的数据进行了一系列实验,以验证所提出的方法,分别获得了100%、99.38%和98.87%的准确率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验