Suppr超能文献

基于监督对比学习的离心泵故障诊断框架。

A Centrifugal Pump Fault Diagnosis Framework Based on Supervised Contrastive Learning.

机构信息

Department of Electrical, Electronic and Computer Engineering, University of Ulsan, Ulsan 44610, Korea.

PD Technology Cooperation, Ulsan 44610, Korea.

出版信息

Sensors (Basel). 2022 Aug 26;22(17):6448. doi: 10.3390/s22176448.

Abstract

A novel intelligent centrifugal pump (CP) fault diagnosis method is proposed in this paper. The method is based on the contrast in vibration data obtained from a centrifugal pump (CP) under several operating conditions. The vibration signals data obtained from a CP are non-stationary because of the impulses caused by different faults; thus, traditional time domain and frequency domain analyses such as fast Fourier transform and Walsh transform are not the best option to pre-process the non-stationary signals. First, to visualize the fault-related impulses in vibration data, we computed the kurtogram images of time series vibration sequences. To extract the discriminant features related to faults from the kurtogram images, we used a deep learning tool convolutional encoder (CE) with a supervised contrastive loss. The supervised contrastive loss pulls together samples belonging to the same class, while pushing apart samples belonging to a different class. The convolutional encoder was pretrained on the kurtograms with the supervised contrastive loss to infer the contrasting features belonging to different CP data classes. After pretraining with the supervised contrastive loss, the learned representations of the convolutional encoder were kept as obtained, and a linear classifier was trained above the frozen convolutional encoder, which completed the fault identification. The proposed model was validated with data collected from a real industrial testbed, yielding a high classification accuracy of 99.1% and an error of less than 1%. Furthermore, to prove the proposed model robust, it was validated on CP data with 3.0 and 3.5 bar inlet pressure.

摘要

本文提出了一种新颖的智能离心泵(CP)故障诊断方法。该方法基于在几种运行条件下从离心泵(CP)获得的振动数据的对比。由于不同故障引起的脉冲,CP 获得的振动信号数据是非平稳的;因此,传统的时频域分析(如快速傅里叶变换和沃尔什变换)不是预处理非平稳信号的最佳选择。首先,为了可视化振动数据中与故障相关的脉冲,我们计算了时间序列振动序列的峭度图图像。为了从峭度图图像中提取与故障相关的判别特征,我们使用了带有监督对比损失的深度学习工具卷积编码器(CE)。监督对比损失将属于同一类的样本拉到一起,同时将属于不同类的样本推开。卷积编码器使用带有监督对比损失的峭度图进行预训练,以推断属于不同 CP 数据类的对比特征。在使用监督对比损失进行预训练后,保持卷积编码器的学习表示不变,并在冻结的卷积编码器上训练线性分类器,从而完成故障识别。该模型使用来自真实工业测试台的数据进行验证,分类准确率高达 99.1%,误差小于 1%。此外,为了证明所提出模型的鲁棒性,还在入口压力为 3.0 和 3.5 巴的 CP 数据上进行了验证。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/af35/9460177/c986c14c2729/sensors-22-06448-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验