文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于改进的自监督学习方法和极少有标签样本的旋转机械故障诊断。

Fault Diagnosis of Rotating Machinery Based on Improved Self-Supervised Learning Method and Very Few Labeled Samples.

机构信息

School of Naval Architecture and Ocean Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.

Wuhan University Shenzhen Research Institute, Shenzhen 518057, China.

出版信息

Sensors (Basel). 2021 Dec 28;22(1):192. doi: 10.3390/s22010192.


DOI:10.3390/s22010192
PMID:35009734
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8749802/
Abstract

Convolution neural network (CNN)-based fault diagnosis methods have been widely adopted to obtain representative features and used to classify fault modes due to their prominent feature extraction capability. However, a large number of labeled samples are required to support the algorithm of CNNs, and, in the case of a limited amount of labeled samples, this may lead to overfitting. In this article, a novel ResNet-based method is developed to achieve fault diagnoses for machines with very few samples. To be specific, data transformation combinations (DTCs) are designed based on mutual information. It is worth noting that the selected DTC, which can complete the training process of the 1-D ResNet quickly without increasing the amount of training data, can be randomly used for any batch training data. Meanwhile, a self-supervised learning method called 1-D SimCLR is adopted to obtain an effective feature encoder, which can be optimized with very few unlabeled samples. Then, a fault diagnosis model named DTC-SimCLR is constructed by combining the selected data transformation combination, the obtained feature encoder and a fully-connected layer-based classifier. In DTC-SimCLR, the parameters of the feature encoder are fixed, and the classifier is trained with very few labeled samples. Two machine fault datasets from a cutting tooth and a bearing are conducted to evaluate the performance of DTC-SimCLR. Testing results show that DTC-SimCLR has superior performance and diagnostic accuracy with very few samples.

摘要

基于卷积神经网络(CNN)的故障诊断方法由于其出色的特征提取能力,已被广泛用于获取代表性特征并用于分类故障模式。然而,由于需要大量的有标签样本来支持 CNN 算法,在有标签样本数量有限的情况下,这可能导致过拟合。在本文中,开发了一种新的基于 ResNet 的方法,以实现少量样本机器的故障诊断。具体来说,基于互信息设计了数据变换组合(DTC)。值得注意的是,选择的 DTC 可以在不增加训练数据量的情况下快速完成 1-D ResNet 的训练过程,可以随机用于任何批处理训练数据。同时,采用称为 1-D SimCLR 的自监督学习方法来获得有效的特征编码器,该编码器可以使用很少的未标记样本进行优化。然后,通过结合选定的数据变换组合、获得的特征编码器和基于全连接层的分类器,构建了一个名为 DTC-SimCLR 的故障诊断模型。在 DTC-SimCLR 中,特征编码器的参数是固定的,并且使用很少的有标签样本对分类器进行训练。使用来自切齿和轴承的两个机器故障数据集来评估 DTC-SimCLR 的性能。测试结果表明,DTC-SimCLR 在使用很少的样本时具有优越的性能和诊断准确性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/255a/8749802/9276e330f29d/sensors-22-00192-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/255a/8749802/2826613367e0/sensors-22-00192-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/255a/8749802/dbfeff7a0853/sensors-22-00192-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/255a/8749802/08c96722b260/sensors-22-00192-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/255a/8749802/b65709a63f68/sensors-22-00192-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/255a/8749802/dcbf558d4d1a/sensors-22-00192-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/255a/8749802/befd52cb433b/sensors-22-00192-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/255a/8749802/fd1c161949e0/sensors-22-00192-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/255a/8749802/261d2c2e9caf/sensors-22-00192-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/255a/8749802/ce8239eb0474/sensors-22-00192-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/255a/8749802/1cf9c8304c53/sensors-22-00192-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/255a/8749802/9276e330f29d/sensors-22-00192-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/255a/8749802/2826613367e0/sensors-22-00192-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/255a/8749802/dbfeff7a0853/sensors-22-00192-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/255a/8749802/08c96722b260/sensors-22-00192-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/255a/8749802/b65709a63f68/sensors-22-00192-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/255a/8749802/dcbf558d4d1a/sensors-22-00192-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/255a/8749802/befd52cb433b/sensors-22-00192-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/255a/8749802/fd1c161949e0/sensors-22-00192-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/255a/8749802/261d2c2e9caf/sensors-22-00192-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/255a/8749802/ce8239eb0474/sensors-22-00192-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/255a/8749802/1cf9c8304c53/sensors-22-00192-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/255a/8749802/9276e330f29d/sensors-22-00192-g011.jpg

相似文献

[1]
Fault Diagnosis of Rotating Machinery Based on Improved Self-Supervised Learning Method and Very Few Labeled Samples.

Sensors (Basel). 2021-12-28

[2]
Contrastive self-supervised learning for diabetic retinopathy early detection.

Med Biol Eng Comput. 2023-9

[3]
Self-Supervised Simple Siamese Framework for Fault Diagnosis of Rotating Machinery With Unlabeled Samples.

IEEE Trans Neural Netw Learn Syst. 2024-5

[4]
Noise Eliminated Ensemble Empirical Mode Decomposition Scalogram Analysis for Rotating Machinery Fault Diagnosis.

Sensors (Basel). 2021-12-4

[5]
An Intelligent Fault Diagnosis Based on Adversarial Generating Module and Semi-supervised Convolutional Neural Network.

Comput Intell Neurosci. 2022

[6]
A Semi-Supervised Approach to Bearing Fault Diagnosis under Variable Conditions towards Imbalanced Unlabeled Data.

Sensors (Basel). 2018-6-29

[7]
Fault Diagnosis for High-Speed Train Axle-Box Bearing Using Simplified Shallow Information Fusion Convolutional Neural Network.

Sensors (Basel). 2020-8-31

[8]
Enhancing Human Activity Recognition in Smart Homes with Self-Supervised Learning and Self-Attention.

Sensors (Basel). 2024-1-29

[9]
A fault diagnosis method based on Auxiliary Classifier Generative Adversarial Network for rolling bearing.

PLoS One. 2021-3-1

[10]
Self-Supervised Joint Learning Fault Diagnosis Method Based on Three-Channel Vibration Images.

Sensors (Basel). 2021-7-13

本文引用的文献

[1]
Sensor drift fault diagnosis for chiller system using deep recurrent canonical correlation analysis and k-nearest neighbor classifier.

ISA Trans. 2022-3

[2]
A new dynamic model and transfer learning based intelligent fault diagnosis framework for rolling element bearings race faults: Solving the small sample problem.

ISA Trans. 2022-2

[3]
Sensor Data-Driven Bearing Fault Diagnosis Based on Deep Convolutional Neural Networks and S-Transform.

Sensors (Basel). 2019-6-19

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索