Suppr超能文献

基于机器学习的循环微小 RNA 预测非小细胞肺癌纳武利尤单抗单药治疗的罕见应答。

Machine learning-based exceptional response prediction of nivolumab monotherapy with circulating microRNAs in non-small cell lung cancer.

机构信息

Preferred Networks, Inc., Tokyo, Japan.

Department of Thoracic Oncology, National Cancer Center Hospital, Tokyo, Japan.

出版信息

Lung Cancer. 2022 Nov;173:107-115. doi: 10.1016/j.lungcan.2022.09.004. Epub 2022 Sep 13.

Abstract

Immune checkpoint inhibitors (ICIs) have significantly improved the survival of advanced non-small cell lung cancer (NSCLC). Detecting NSCLC patients with exceptional response to ICIs is necessary to improve the treatment. This case control study profiled circulating microRNA expressions of 213 NSCLC patients treated with nivolumab monotherapy to identify patients with exceptional response. Based on the response and progression-free survival, patients were divided into 3 groups: Exceptional-responder (n = 27), Resistance (n = 161), and Others (n = 25). Resistance group was further randomly partitioned into six non-overlapping sets (n = 26 or 27), while each partition was combined with Exceptional-responder and Others to make balanced datasets. We built machine learning models optimized for identifying Exceptional-responder via 3-group classification and constructed a panel of 45 microRNAs and 3 fields of clinical information. Machine learning models based on the selected panel achieved 0.81-0.89 (median 0.85) sensitivity and 0.52-0.71 (median 0.59) precision for Exceptional-responder in 3-group classification with 5-fold cross validation in all six datasets constructed, while conventional method relying on tumor PD-L1 immunohistochemistry achieved 0.44-0.44 sensitivity and 0.55-0.67 (median 0.62) precision. This study demonstrated the machine learning models achieved much higher sensitivity and accuracy in identifying Exceptional-responder to nivolumab monotherapy when comparing to conventional method only using companion PD-L1 testing.

摘要

免疫检查点抑制剂(ICIs)显著改善了晚期非小细胞肺癌(NSCLC)患者的生存。检测对 ICI 有特殊反应的 NSCLC 患者,对于改善治疗非常必要。本病例对照研究分析了 213 例接受纳武利尤单抗单药治疗的 NSCLC 患者的循环 microRNA 表达,以确定具有特殊反应的患者。根据反应和无进展生存期,患者分为 3 组:特殊反应组(n=27)、耐药组(n=161)和其他组(n=25)。耐药组进一步随机分为六个不重叠的子集(n=26 或 27),同时将每个子集与特殊反应组和其他组相结合,以构建平衡数据集。我们通过 3 组分类构建了优化用于识别特殊反应的机器学习模型,并构建了由 45 个 microRNA 和 3 个临床信息字段组成的面板。基于选定面板的机器学习模型在所有 6 个构建的数据集的 5 倍交叉验证中,在 3 组分类中实现了 0.81-0.89(中位数 0.85)的敏感性和 0.52-0.71(中位数 0.59)的特异性,而仅依赖肿瘤 PD-L1 免疫组化的传统方法实现了 0.44-0.44 的敏感性和 0.55-0.67(中位数 0.62)的特异性。与仅使用伴随 PD-L1 检测的传统方法相比,本研究表明,机器学习模型在识别纳武利尤单抗单药治疗的特殊反应者方面具有更高的敏感性和准确性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验