Suppr超能文献

基于微小RNA的外泌体靶向多靶点、多途径干预的个性化肺癌治疗:预后预测与生存风险评估

MiRNA-Based Exosome-Targeted Multi-Target, A Multi-Pathway Intervention for Personalized Lung Cancer Therapy: Prognostic Prediction and Survival Risk Assessment.

作者信息

Liu Jiefeng, Tang Yukai, Liu Xueying, Gong Yujing, Sun Ziqi, Yin Yao, Liu Yiping

机构信息

Department of General Surgery, The Fourth Hospital of Changsha, Hunan Normal University. Changsha 410006, China.

Department of Oncology, Xiangya Hospital, Central South University. Changsha 410078, China.

出版信息

Iran J Biotechnol. 2025 Apr 1;23(2):e4112. doi: 10.30498/ijb.2025.516588.4112. eCollection 2025 Apr.

Abstract

BACKGROUND

Lung cancer remains one of the most prevalent and lethal cancers globally, often diagnosed at advanced stages, which impedes effective treatment. Recent advancements have highlighted exosomes as valuable biomarkers for early detection, prognosis, and therapeutic interventions in lung cancer. Exosomes, which carry molecular information from tumor cells, reflect tumor development and metastasis, offering potential for precision medicine.

OBJECTIVE

This study aimed to develop a prognostic prediction model for lung cancer therapy based on miRNA profiling in exosomes. By performing bioinformatics analyses, we identified miRNAs and target genes associated with lung cancer treatment and their potential relationship with patient survival outcomes.

MATERIALS AND METHODS

Using the GSE207715 dataset, we applied machine learning models and a Transformer-based deep learning approach to predict nivolumab treatment efficacy in lung cancer patients. Additionally, miRNA-target gene interactions were predicted via miRNA databases, followed by Gene Ontology and KEGG pathway enrichment analyses. A Cox proportional hazards regression model was used to assess the relationship between miRNA expression and patient survival.

RESULTS

Significant differences were observed in the miRNA profiles of exosomes from patients with different nivolumab treatment outcomes, though the differences were relatively small. Machine learning models achieved prediction accuracies ranging from 0.6731 to 0.6923, while the deep learning model outperformed these methods with an accuracy of 0.9412. The hsa-let-7c miRNA showed statistical significance in multivariate survival risk analysis (p = 0.0152).

CONCLUSION

This study demonstrates the potential of miRNA profiling in exosomes for predicting treatment efficacy and survival in lung cancer patients. The deep learning model's ability to capture subtle miRNA expression differences provides a robust platform for personalized treatment strategies in non-small cell lung cancer.

摘要

背景

肺癌仍然是全球最常见且致命的癌症之一,通常在晚期才被诊断出来,这阻碍了有效治疗。最近的进展突出了外泌体作为肺癌早期检测、预后和治疗干预的有价值生物标志物。外泌体携带来自肿瘤细胞的分子信息,反映肿瘤的发展和转移,为精准医学提供了潜力。

目的

本研究旨在基于外泌体中的miRNA谱开发一种肺癌治疗的预后预测模型。通过进行生物信息学分析,我们确定了与肺癌治疗相关的miRNA和靶基因及其与患者生存结果的潜在关系。

材料和方法

使用GSE207715数据集,我们应用机器学习模型和基于Transformer的深度学习方法来预测肺癌患者的纳武单抗治疗效果。此外,通过miRNA数据库预测miRNA-靶基因相互作用,随后进行基因本体论和KEGG通路富集分析。使用Cox比例风险回归模型评估miRNA表达与患者生存之间的关系。

结果

在不同纳武单抗治疗结果的患者外泌体miRNA谱中观察到显著差异,尽管差异相对较小。机器学习模型的预测准确率在0.6731至0.6923之间,而深度学习模型的表现优于这些方法,准确率为0.9412。hsa-let-7c miRNA在多变量生存风险分析中具有统计学意义(p = 0.0152)。

结论

本研究证明了外泌体中的miRNA谱在预测肺癌患者治疗效果和生存方面的潜力。深度学习模型捕捉细微miRNA表达差异的能力为非小细胞肺癌的个性化治疗策略提供了一个强大的平台。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eef9/12374054/ac4f120a4f07/IJB-23-2-e4112-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验