Suppr超能文献

磁场诱导酿酒酵母产生谷胱甘肽和过氧化物酶。

Magnetic fields as inducer of glutathione and peroxidase production by Saccharomyces cerevisiae.

机构信息

Laboratory of Biotechnology, School of Chemistry and Food, Federal University of Rio Grande, Rio Grande, RS, 96203-900, Brazil.

Laboratory of Mycotoxin and Food Science, School of Chemistry and Food, Federal University of Rio Grande, Rio Grande, RS, 96203-900, Brazil.

出版信息

Braz J Microbiol. 2022 Dec;53(4):1881-1891. doi: 10.1007/s42770-022-00836-9. Epub 2022 Oct 6.

Abstract

Glutathione (GSH) and peroxidase (POD) are biomolecules of interest in the global market; thus, it is desirable to seek ways to increase their production. Magnetic field (MF) application is one of the technologies used in cultivation that has shown promising results to increase bioproducts. Therefore, this study aimed at evaluating the influence of MFs on GSH and POD production by Saccharomyces cerevisiae ATCC 7754. Different periods of MF application (35 mT) were evaluated over 72 h. The highest GSH production was reached in 48 h of cultivation in assays MF 0-24 (155.32 ± 9.12 mg L) and MF 0-72 (149.27 ± 3.62 mg L), which showed an increase of 121.9 % and 113 %, respectively, by comparison with the control without any MF application. The highest POD activity was achieved when MFs were applied throughout the culture (36.31 U mg) and POD productivity of 0.72 U mg h. MF application throughout cultivation proved to be a promising strategy since all responses increased, i.e., GSH concentration, GSH productivity, POD activity, and POD productivity increased 113.7 %, 113 %, 20.4 %, and 28.6 %, respectively. This study is one of the first to consider MFs as a viable and low-cost alternative to produce GSH and POD in bioprocesses.

摘要

谷胱甘肽(GSH)和过氧化物酶(POD)是全球市场关注的生物分子;因此,寻求增加其产量的方法是可取的。磁场(MF)应用是一种用于培养的技术,它已显示出增加生物制品的有希望的结果。因此,本研究旨在评估 MF 对 Saccharomyces cerevisiae ATCC 7754 生产 GSH 和 POD 的影响。评估了不同时期的 MF 应用(35 mT),持续 72 小时。在 MF 0-24(155.32±9.12 mg L)和 MF 0-72(149.27±3.62 mg L)培养 48 小时时达到了最高的 GSH 产量,与不施加任何 MF 的对照相比,分别增加了 121.9%和 113%。当 MF 应用于整个培养过程时,POD 活性最高(36.31 U mg),POD 生产率为 0.72 U mg h。整个培养过程中施加 MF 被证明是一种很有前途的策略,因为所有的反应都增加了,即 GSH 浓度、GSH 生产率、POD 活性和 POD 生产率分别增加了 113.7%、113%、20.4%和 28.6%。这项研究是首次考虑 MF 作为一种可行的、低成本的替代方法,在生物过程中生产 GSH 和 POD。

相似文献

1
Magnetic fields as inducer of glutathione and peroxidase production by Saccharomyces cerevisiae.
Braz J Microbiol. 2022 Dec;53(4):1881-1891. doi: 10.1007/s42770-022-00836-9. Epub 2022 Oct 6.
2
Mitigation of nivalenol using alcoholic fermentation and magnetic field application.
Food Chem. 2021 Mar 15;340:127935. doi: 10.1016/j.foodchem.2020.127935. Epub 2020 Aug 28.
3
Correlation of antioxidant capacities to oxygen radical scavenging enzyme activities in blackberry.
J Agric Food Chem. 2000 Nov;48(11):5672-6. doi: 10.1021/jf000765q.
5
Glutathione production by Saccharomyces cerevisiae: current state and perspectives.
Appl Microbiol Biotechnol. 2022 Mar;106(5-6):1879-1894. doi: 10.1007/s00253-022-11826-0. Epub 2022 Feb 19.
7
Increased lipid synthesis in the culture of Chlorella homosphaera with magnetic fields application.
Bioresour Technol. 2020 Nov;315:123880. doi: 10.1016/j.biortech.2020.123880. Epub 2020 Jul 20.
8
Bioprocess optimization of glutathione production by Saccharomyces boulardii: biochemical characterization of glutathione peroxidase.
Arch Microbiol. 2021 Dec;203(10):6183-6196. doi: 10.1007/s00203-021-02584-0. Epub 2021 Sep 27.
9
The effect of NADPH oxidase inhibitor diphenyleneiodonium (DPI) and glutathione (GSH) on , under Arsenic (As) toxicity.
Int J Phytoremediation. 2021;23(9):945-957. doi: 10.1080/15226514.2020.1870435. Epub 2021 Jan 21.
10
Magnetic fields exhibit a positive impact on lipid and biomass yield during phototrophic cultivation of Spirulina sp.
Bioprocess Biosyst Eng. 2021 Oct;44(10):2087-2097. doi: 10.1007/s00449-021-02585-9. Epub 2021 May 23.

引用本文的文献

1
Optimized extraction technology of glutathione from 'Haidao 86' germ rice by response surface methodology.
Food Sci Nutr. 2023 Sep 1;11(11):7255-7263. doi: 10.1002/fsn3.3651. eCollection 2023 Nov.
2
Extracellular lipase production by Yarrowia lipolytica under magnetic fields.
World J Microbiol Biotechnol. 2023 Aug 31;39(11):290. doi: 10.1007/s11274-023-03732-y.
3
The Metabolism of Susceptibility: Clearing the FoG Between Tolerance and Resistance in .
Curr Clin Microbiol Rep. 2023 Mar 28;10(2):36-46. doi: 10.1007/s40588-023-00189-3.

本文引用的文献

1
Mechanism of action, sources, and application of peroxidases.
Food Res Int. 2021 May;143:110266. doi: 10.1016/j.foodres.2021.110266. Epub 2021 Mar 5.
2
Magnetic field as promoter of growth in outdoor and indoor assays of Chlorella fusca.
Bioprocess Biosyst Eng. 2021 Jul;44(7):1453-1460. doi: 10.1007/s00449-021-02526-6. Epub 2021 Mar 24.
5
Zearalenone reduction by commercial peroxidase enzyme and peroxidases from soybean bran and rice bran.
Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 2018 Sep;35(9):1819-1831. doi: 10.1080/19440049.2018.1486044. Epub 2018 Aug 14.
7
Microbial antioxidant defense enzymes.
Microb Pathog. 2017 Sep;110:56-65. doi: 10.1016/j.micpath.2017.06.015. Epub 2017 Jun 16.
8
Glutathione and its antiaging and antimelanogenic effects.
Clin Cosmet Investig Dermatol. 2017 Apr 27;10:147-153. doi: 10.2147/CCID.S128339. eCollection 2017.
9
Magnetic fields as triggers of microalga growth: evaluation of its effect on Spirulina sp.
Bioresour Technol. 2016 Nov;220:62-67. doi: 10.1016/j.biortech.2016.08.038. Epub 2016 Aug 12.
10
Protective effects of the thiol compounds GSH and NAC against sulfur mustard toxicity in a human keratinocyte cell line.
Toxicol Lett. 2016 Feb 26;244:35-43. doi: 10.1016/j.toxlet.2015.09.002. Epub 2015 Sep 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验