Faculty of Natural Sciences, Turkish-German University, Istanbul, Turkey.
Faculty of Engineering, Turkish-German University, Istanbul, Turkey.
PeerJ. 2022 Sep 30;10:e14029. doi: 10.7717/peerj.14029. eCollection 2022.
Due to its intrinsically disordered nature, the histone tail is conformationally heterogenic. Therefore, it provides specific binding sites for different binding proteins or factors through reversible post-translational modifications (PTMs). For instance, experimental studies stated that the ING family binds with the histone tail that has methylation on the lysine in position 4. However, numerous complexes featuring a methylated fourth lysine residue of the histone tail can be found in the UniProt database. So the question arose if other factors like the conformation of the histone tail affect the binding affinity.
The crystal structure of the PHD finger domain from the proteins ING1, ING2, ING4, and ING5 are docked to four histone H3 tails with two different conformations using Haddock 2.4 and ClusPro. The best four models for each combination are selected and a two-sample t-test is performed to compare the binding affinities of helical conformations vs. linear conformations using Prodigy. The protein-protein interactions are examined using LigPlot.
The linear histone conformations in predicted INGs-histone H3 complexes exhibit statistically significant higher binding affinity than their helical counterparts (confidence level of 99%). The outputs of predicted models generated by the molecular docking programs Haddock 2.4 and ClusPro are comparable, and the obtained protein-protein interaction patterns are consistent with experimentally confirmed binding patterns.
The results show that the conformation of the histone tail is significantly affecting the binding affinity of the docking protein. Herewith, this study demonstrated in detail the binding preference of the ING protein family to histone H3 tail. Further research on the effect of certain PTMs on the final tail conformation and the interaction between those factors seem to be promising for a better understanding of epigenetics.
由于其固有无序的性质,组蛋白尾部在构象上具有异质性。因此,它通过可逆的翻译后修饰(PTMs)为不同的结合蛋白或因子提供特异性结合位点。例如,实验研究表明,ING 家族与赖氨酸 4 位发生甲基化的组蛋白尾部结合。然而,在 UniProt 数据库中可以找到许多具有组蛋白尾部第四个赖氨酸残基甲基化的复合物。因此,人们不禁要问,其他因素(如组蛋白尾部的构象)是否会影响结合亲和力。
使用 Haddock 2.4 和 ClusPro 将来自 ING1、ING2、ING4 和 ING5 蛋白的 PHD 指状结构域的晶体结构对接至具有两种不同构象的四个组蛋白 H3 尾部。选择每种组合的最佳四个模型,并使用 Prodigy 对螺旋构象与线性构象的结合亲和力进行双样本 t 检验。使用 LigPlot 检查蛋白质-蛋白质相互作用。
在预测的 INGs-组蛋白 H3 复合物中,线性组蛋白构象表现出比其螺旋构象更高的统计学显著结合亲和力(置信水平为 99%)。由分子对接程序 Haddock 2.4 和 ClusPro 生成的预测模型的输出结果相当,并且获得的蛋白质-蛋白质相互作用模式与实验证实的结合模式一致。
结果表明,组蛋白尾部的构象显著影响对接蛋白的结合亲和力。本研究详细展示了 ING 蛋白家族对组蛋白 H3 尾部的结合偏好。进一步研究某些 PTMs 对最终尾部构象的影响以及这些因素之间的相互作用,对于更好地理解表观遗传学似乎很有前途。