Suppr超能文献

采用偏最小二乘回归(PLSR)和人工神经网络(ANN)模型的傅里叶变换红外光谱法评估缅甸琥珀的自然老化响应及其耐久性。

Evaluation of natural ageing responses on Burmese amber durability by FTIR spectroscopy with PLSR and ANN models.

机构信息

Gemological Institute, China University of Geosciences, Wuhan 430074, China.

Gemological Institute, China University of Geosciences, Wuhan 430074, China; Hubei Engineering Research Center of Jewelry, Wuhan 430074, China.

出版信息

Spectrochim Acta A Mol Biomol Spectrosc. 2023 Jan 15;285:121936. doi: 10.1016/j.saa.2022.121936. Epub 2022 Oct 3.

Abstract

Amber ageing is an inevitable process, which is very important in precious organic gemstone relics protection. In order to explore the mechanism of amber ageing and estimate the durability of Burmese amber, this research investigates the changing spectral features of Burmese ageing amber via Fourier Transform Infrared Spectroscopy (FTIR) and solid C Nuclear Magnetic Resonance spectroscopy (NMR) and develops the regression models for its micro-hardness by micro-FTIR spectra. The Partial Least Squares Regression (PLSR) and Artificial Neural Networks (ANN) methods as well as Competitive Adaptive Reweighted Sampling (CARS) algorithm for wavelength variables selection have been applied to predict and assess the Vickers hardness of amber samples with different ageing degrees. As a result, the FTIR and the solid C NMR spectra reveal that the contents of CO groups (of esters) increase substantially, and which of the other oxygenic groups (CO (of acids), COC, COCC) increase modestly in amber ageing. When comparing with the results of four different models (PLSR, ANN, CARS-PLSR and CARS-ANN), the CARS-PLSR model obtained the optimal results as follows: the squared correlation coefficient of calibration(Rcal) is 0.9230 and the root mean square error of calibration (RMSEC) is 1.2977 HV; the squared correlation coefficient of prediction (Rpre) is 0.7762 and the root mean square error of prediction (RMSEP) is 2.2208 HV. The overall results sufficiently demonstrate that FTIR spectroscopy technique coupled with appropriate chemometrics methods are very promising tools to estimate and predict the hardness property of Burmese ageing amber.

摘要

琥珀老化是一个不可避免的过程,在珍贵有机宝石文物的保护中非常重要。为了探索琥珀老化的机制并评估缅甸琥珀的耐久性,本研究通过傅里叶变换红外光谱(FTIR)和固态 C 核磁共振光谱(NMR)研究了缅甸老化琥珀光谱特征的变化,并通过微 FTIR 光谱开发了其显微硬度的回归模型。偏最小二乘回归(PLSR)和人工神经网络(ANN)方法以及竞争自适应重加权采样(CARS)算法已应用于预测和评估具有不同老化程度的琥珀样品的维氏硬度。结果表明,FTIR 和固态 C NMR 光谱表明 CO 基团(酯)的含量显著增加,而其他含氧基团(CO(酸)、COC、COCC)的含量在琥珀老化过程中略有增加。与四个不同模型(PLSR、ANN、CARS-PLSR 和 CARS-ANN)的结果相比,CARS-PLSR 模型获得了最佳结果:校准的平方相关系数(Rcal)为 0.9230,校准的均方根误差(RMSEC)为 1.2977 HV;预测的平方相关系数(Rpre)为 0.7762,预测的均方根误差(RMSEP)为 2.2208 HV。总体结果充分表明,FTIR 光谱技术结合适当的化学计量学方法是评估和预测缅甸老化琥珀硬度特性的很有前途的工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验