Suppr超能文献

基于遗传算法的人工神经网络和偏最小二乘回归方法,利用衰减全反射傅里叶变换红外光谱法预测电力行业变压器油样本的击穿电压。

Genetic algorithm based artificial neural network and partial least squares regression methods to predict of breakdown voltage for transformer oils samples in power industry using ATR-FTIR spectroscopy.

机构信息

Chemistry Department, Faculty of Science, Imam Khomeini International University, P.O. Box 3414896818, Qazvin, Iran.

Chemistry Department, Faculty of Science, Imam Khomeini International University, P.O. Box 3414896818, Qazvin, Iran.

出版信息

Spectrochim Acta A Mol Biomol Spectrosc. 2022 May 15;273:120999. doi: 10.1016/j.saa.2022.120999. Epub 2022 Feb 5.

Abstract

The current study proposes a novel analytical method for calculating the breakdown voltage (BV) of transformer oil samples considered as a significant method to assess the safe operation of power industry. Transformer oil samples can be analyzed using the Attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy combined with multivariate calibration methods. The partial least squares regression (PLSR) back propagation-artificial neural network (BP-ANN) methods and a genetic algorithm (GA) for variable selection are used to predict and assess breakdown voltage in transformer oil samples from various Iranian transformer oils. As a result, the root mean square error (RMSE) and correlation coefficient for the training and test sets of oil samples are also calculated. In the GA-PLS-R method, the squared correlation coefficient (Rpred) and root mean square prediction error (RMSEP) are 0.9437 and 2.6835, respectively. GA-BP-ANN, on the other hand, had a lower RMSEP value (0.2874) and a higher Rpred function (0.9891). Considering the complexity of transformer oil samples, the performance of GA-BP-ANN has resulted in an efficient approach for predicting breakdown voltage; consequently, it can be effectively used as a new method for quantitative breakdown voltage analysis of samples to evaluate the health of transformer oil. .

摘要

本研究提出了一种新的分析方法来计算变压器油样本的击穿电压 (BV),这被认为是评估电力行业安全运行的重要方法。可以使用衰减全反射傅里叶变换红外 (ATR-FTIR) 光谱结合多元校准方法来分析变压器油样本。偏最小二乘回归 (PLSR) 反向传播人工神经网络 (BP-ANN) 方法和遗传算法 (GA) 用于变量选择,用于预测和评估来自各种伊朗变压器油的变压器油样本的击穿电压。结果,还计算了油样的训练集和测试集的均方根误差 (RMSE) 和相关系数。在 GA-PLS-R 方法中,平方相关系数 (Rpred) 和均方根预测误差 (RMSEP) 分别为 0.9437 和 2.6835。另一方面,GA-BP-ANN 的 RMSEP 值 (0.2874) 较低,Rpred 函数较高 (0.9891)。考虑到变压器油样本的复杂性,GA-BP-ANN 的性能为预测击穿电压提供了一种有效的方法;因此,它可以有效地用作对样本进行定量击穿电压分析以评估变压器油健康状况的新方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验