Suppr超能文献

IOFS-SA:一种用于生存分析的交互式在线特征选择工具。

IOFS-SA: An interactive online feature selection tool for survival analysis.

作者信息

Zhao Xudong, He Yuanyuan, Wu Youlin, Liu Tong, Wang Guohua

机构信息

College of Information and Computer Engineering, Northeast Forestry University, Harbin, 150040, China.

College of Information and Computer Engineering, Northeast Forestry University, Harbin, 150040, China.

出版信息

Comput Biol Med. 2022 Nov;150:106121. doi: 10.1016/j.compbiomed.2022.106121. Epub 2022 Sep 24.

Abstract

BACKGROUND

Survival analysis is a primary problem before clinical treatments to cancer patients after their operations. In order to make this kind of analysis simple, many corresponding tools have been proposed. Though these tools are easy to use, there exist still two fatal flaws. One is that sample grouping is commonly empirical and wrongly based on original gene expressions or survival time. The other is that their feature selection methods mostly depend univariate semi-supervised regression or the multivariate one without considering the small sample size compared with the high dimension.

OBJECTIVE

In order to solve the two problems, we design an automatic feature selection web tool which can also satisfy interactive sample grouping.

METHODS

An automatic feature selection is performed on user-defined data or TCGA data. users can also perform manual feature selection. Then, hierarchical clustering is used and an automatic re-clustering strategy is proposed after interactive risk score split. Kaplan-Meier survival curve and log-rank test are utilized as the measurement.

RESULTS

Experimental results on 53 datasets from TCGA demonstrate the effectiveness of our method. The tree view, heat map and scatter map can intuitively display the result of the selected genes to the doctors for further research.

CONCLUSIONS

This method is suitable for survival analysis of high-dimensional small sample data sets. At the same time, it also provides a platform for researchers to analyze custom data. It solves the problems of the existing web tools and provides an effective feature selection method for survival analysis.

AVAILABILITY

The full code package is freely available and can be downloaded at https://github.com/Yuan-23/IOFS-SA-ecp-data-main, and the online version at https://bioinfor.nefu.edu.cn/IOFS-SA/ is ready for use freely.

摘要

背景

生存分析是癌症患者术后临床治疗前的一个主要问题。为了使这类分析变得简单,人们提出了许多相应的工具。尽管这些工具易于使用,但仍然存在两个致命缺陷。一是样本分组通常是经验性的,且错误地基于原始基因表达或生存时间。另一个是它们的特征选择方法大多依赖单变量半监督回归或多变量回归,而没有考虑与高维度相比的小样本量。

目的

为了解决这两个问题,我们设计了一个自动特征选择网络工具,该工具还能满足交互式样本分组。

方法

对用户定义的数据或TCGA数据进行自动特征选择。用户也可以进行手动特征选择。然后,使用层次聚类,并在交互式风险评分拆分后提出自动重新聚类策略。采用Kaplan-Meier生存曲线和对数秩检验作为衡量标准。

结果

来自TCGA的53个数据集的实验结果证明了我们方法的有效性。树形图、热图和散点图可以直观地向医生展示所选基因的结果,以便进一步研究。

结论

该方法适用于高维小样本数据集的生存分析。同时,它也为研究人员分析自定义数据提供了一个平台。它解决了现有网络工具的问题,并为生存分析提供了一种有效的特征选择方法。

可用性

完整的代码包可免费获取,可在https://github.com/Yuan-23/IOFS-SA-ecp-data-main下载,在线版本https://bioinfor.nefu.edu.cn/IOFS-SA/可免费使用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验