Cui Peng, Zeng Yuping
Institute of Novel Semiconductors, Shandong University, Jinan, 250100, Shandong, China.
Department of Electrical and Computer Engineering, University of Delaware, Newark, DE, 19716, USA.
Sci Rep. 2022 Oct 6;12(1):16683. doi: 10.1038/s41598-022-21092-9.
Due to the low cost and the scaling capability of Si substrate, InAlN/GaN high-electron-mobility transistors (HEMTs) on silicon substrate have attracted more and more attentions. In this paper, a high-performance 50-nm-gate-length InAlN/GaN HEMT on Si with a high on/off current (I/I) ratio of 7.28 × 10, an average subthreshold swing (SS) of 72 mV/dec, a low drain-induced barrier lowing (DIBL) of 88 mV, an off-state three-terminal breakdown voltage (BV) of 36 V, a current/power gain cutoff frequency (f/f) of 140/215 GHz, and a Johnson's figure-of-merit (JFOM) of 5.04 THz V is simultaneously demonstrated. The device extrinsic and intrinsic parameters are extracted using equivalent circuit model, which is verified by the good agreement between simulated and measured S-parameter values. Then the scaling behavior of InAlN/GaN HEMTs on Si is predicted using the extracted extrinsic and intrinsic parameters of devices with different gate lengths (L). It presents that a f/f of 230/327 GHz can be achieved when L scales down to 20 nm with the technology developed in the study, and an improved f/f of 320/535 GHz can be achieved on a 20-nm-gate-length InAlN/GaN HEMT with regrown ohmic contact technology and 30% decreased parasitic capacitance. This study confirms the feasibility of further improvement of InAlN/GaN HEMTs on Si for RF applications.
由于硅衬底成本低且具有可扩展性,硅衬底上的氮化铟铝/氮化镓高电子迁移率晶体管(HEMT)受到越来越多的关注。本文展示了一种高性能的50纳米栅长硅基氮化铟铝/氮化镓HEMT,其开/关电流(I/I)比高达7.28×10,平均亚阈值摆幅(SS)为72毫伏/十倍频程,漏极诱导势垒降低(DIBL)为88毫伏,关态三端击穿电压(BV)为36伏,电流/功率增益截止频率(f/f)为140/215吉赫兹,以及约翰逊优值(JFOM)为5.04太赫兹·伏。使用等效电路模型提取器件的外在和内在参数,模拟和测量的S参数值之间的良好一致性验证了该模型。然后,利用提取的不同栅长(L)器件的外在和内在参数预测硅基氮化铟铝/氮化镓HEMT的缩放行为。结果表明,采用本研究中开发的技术,当L缩小至20纳米时,可实现f/f为230/327吉赫兹;对于采用再生长欧姆接触技术且寄生电容降低30%的20纳米栅长氮化铟铝/氮化镓HEMT,可实现f/f为320/535吉赫兹的改进。本研究证实了进一步改进硅基氮化铟铝/氮化镓HEMT用于射频应用的可行性。