Astbury Centre for Structural Molecular Biology and School of Chemistry, University of Leeds, Leeds LS2 9JT, UK.
Astbury Centre for Structural Molecular Biology and School of Chemistry, University of Leeds, Leeds LS2 9JT, UK; Bragg Centre for Materials Research, University of Leeds, Leeds LS2 9JT, UK.
Biophys J. 2023 Jun 6;122(11):1985-1995. doi: 10.1016/j.bpj.2022.10.006. Epub 2022 Oct 5.
Membrane fusion is a tool to increase the complexity of model membrane systems. Here, we use silica nanoparticles to fuse liquid-disordered DOPC giant unilamellar vesicles (GUVs) and liquid-ordered DPPC:cholesterol (7:3) GUVs. After fusion, GUVs display large membrane domains as confirmed by fluorescence confocal microscopy. Laurdan spectral imaging of the membrane phases in the fused GUVs shows differences compared with the initial vesicles indicating some lipid redistribution between phase domains as dictated by the tie lines of the phase diagram. Remarkably, using real-time confocal microscopy we were able to record the dynamics of formation of asymmetric membrane domains in hemifused GUVs and detected interleaflet coupling phenomena by which the DOPC-rich liquid-disordered domains in outer monolayer modulates the phase state of the DPPC:cholesterol inner membrane leaflet which transitions from liquid-ordered to liquid-disordered phase. We find that internal membrane stresses generated by membrane asymmetry enhance the efficiency of full fusion compared with our previous studies on symmetric vesicle fusion. Furthermore, under these conditions, the liquid-disordered monolayer dictates the bilayer phase state of asymmetric membrane domains in >90% of observed cases. By comparison to the findings of previous literature, we suggest that the monolayer phase that dominates the bilayer properties could be a mechanoresponsive signaling mechanism sensitive to the local membrane environment.
膜融合是增加模型膜系统复杂性的一种工具。在这里,我们使用二氧化硅纳米粒子融合无序的 DOPC 大单室囊泡 (GUV) 和有序 DPPC:胆固醇 (7:3) GUV。融合后,荧光共焦显微镜证实 GUV 显示出大的膜域。融合 GUV 中膜相的 Laurdan 光谱成像与初始囊泡相比显示出差异,表明在相图的 tie lines 指导下,相域之间存在一些脂质再分配。值得注意的是,我们能够使用实时共焦显微镜记录半融合 GUV 中不对称膜域形成的动力学,并通过跨膜偶联现象检测到脂质再分配,其中外单层中的富含 DOPC 的无序液体域调节 DPPC:胆固醇内层膜的相态,从有序相转变为无序相。我们发现与我们之前关于对称囊泡融合的研究相比,内部膜不对称产生的应力增强了完全融合的效率。此外,在这些条件下,无序单层决定了 >90%观察到的不对称膜域的双层相态。与之前文献的发现相比,我们提出占主导地位的双层性质的单层相可能是一种对局部膜环境敏感的机械响应信号机制。