Biophysical Engineering Group, Max Planck Institute for Medical Research, Jahnstraße 29, 69120, Heidelberg, Germany.
Department of Physics and Astronomy, Heidelberg University, 69120, Heidelberg, Germany.
Angew Chem Int Ed Engl. 2021 May 3;60(19):10661-10669. doi: 10.1002/anie.202014174. Epub 2021 Mar 24.
Success in the bottom-up assembly of synthetic cells will depend on strategies for the division of protocellular compartments. Here, we describe the controlled division of phase-separated giant unilamellar lipid vesicles (GUVs). We derive an analytical model based on the vesicle geometry, which makes four quantitative predictions that we verify experimentally. We find that the osmolarity ratio required for division is , independent of the GUV size, while asymmetric division happens at lower osmolarity ratios. Remarkably, we show that a suitable osmolarity change can be triggered by water evaporation, enzymatic decomposition of sucrose or light-triggered uncaging of CMNB-fluorescein. The latter provides full spatiotemporal control, such that a target GUV undergoes division whereas the surrounding GUVs remain unaffected. Finally, we grow phase-separated vesicles from single-phased vesicles by targeted fusion of the opposite lipid type with programmable DNA tags to enable subsequent division cycles.
在自下而上组装合成细胞方面取得成功将取决于对原细胞区室进行划分的策略。在这里,我们描述了相分离的巨大单室脂质囊泡(GUV)的受控分裂。我们基于囊泡几何形状推导出一个分析模型,该模型做出了四个定量预测,我们通过实验验证了这些预测。我们发现,分裂所需的渗透压比与 GUV 大小无关,而不对称分裂发生在较低的渗透压比下。值得注意的是,我们表明,合适的渗透压变化可以通过水蒸发、蔗糖酶分解或光触发的 CMNB-荧光素去笼来触发。后一种方法提供了完全的时空控制,使得目标 GUV 进行分裂,而周围的 GUV 不受影响。最后,我们通过具有可编程 DNA 标签的相反脂质类型的靶向融合,从单相囊泡中生长出相分离的囊泡,以实现随后的分裂循环。