Suppr超能文献

使用机器学习方法通过细胞因子谱聚类确定的住院COVID-19患者死亡率差异:一种结局预测方法。

Difference in mortality rates in hospitalized COVID-19 patients identified by cytokine profile clustering using a machine learning approach: An outcome prediction alternative.

作者信息

Castro-Castro Ana Cristina, Figueroa-Protti Lucia, Molina-Mora Jose Arturo, Rojas-Salas María Paula, Villafuerte-Mena Danae, Suarez-Sánchez María José, Sanabría-Castro Alfredo, Boza-Calvo Carolina, Calvo-Flores Leonardo, Solano-Vargas Mariela, Madrigal-Sánchez Juan José, Sibaja-Campos Mario, Silesky-Jiménez Juan Ignacio, Chaverri-Fernández José Miguel, Soto-Rodríguez Andrés, Echeverri-McCandless Ann, Rojas-Chaves Sebastián, Landaverde-Recinos Denis, Weigert Andreas, Mora Javier

机构信息

Centro de Investigación en Enfermedades Tropicales (CIET), Universidad de Costa Rica, San José, Costa Rica.

Centro de Investigación en Cirugía y Cáncer (CICICA), Universidad de Costa Rica, San José, Costa Rica.

出版信息

Front Med (Lausanne). 2022 Sep 20;9:987182. doi: 10.3389/fmed.2022.987182. eCollection 2022.

Abstract

COVID-19 is a disease caused by the novel Coronavirus SARS-CoV-2 causing an acute respiratory disease that can eventually lead to severe acute respiratory syndrome (SARS). An exacerbated inflammatory response is characteristic of SARS-CoV-2 infection, which leads to a cytokine release syndrome also known as cytokine storm associated with the severity of the disease. Considering the importance of this event in the immunopathology of COVID-19, this study analyses cytokine levels of hospitalized patients to identify cytokine profiles associated with severity and mortality. Using a machine learning approach, 3 clusters of COVID-19 hospitalized patients were created based on their cytokine profile. Significant differences in the mortality rate were found among the clusters, associated to different CXCL10/IL-38 ratio. The balance of a CXCL10 induced inflammation with an appropriate immune regulation mediated by the anti-inflammatory cytokine IL-38 appears to generate the adequate immune context to overrule SARS-CoV-2 infection without creating a harmful inflammatory reaction. This study supports the concept that analyzing a single cytokine is insufficient to determine the outcome of a complex disease such as COVID-19, and different strategies incorporating bioinformatic analyses considering a broader immune profile represent a more robust alternative to predict the outcome of hospitalized patients with SARS-CoV-2 infection.

摘要

新型冠状病毒肺炎(COVID-19)是一种由新型冠状病毒SARS-CoV-2引起的疾病,可导致急性呼吸道疾病,最终可能发展为严重急性呼吸综合征(SARS)。炎症反应加剧是SARS-CoV-2感染的特征,这会导致细胞因子释放综合征,也称为细胞因子风暴,与疾病的严重程度相关。考虑到这一事件在COVID-19免疫病理学中的重要性,本研究分析了住院患者的细胞因子水平,以确定与疾病严重程度和死亡率相关的细胞因子谱。采用机器学习方法,根据住院患者的细胞因子谱将其分为3组。研究发现,不同组之间的死亡率存在显著差异,这与不同的CXCL10/IL-38比值有关。由促炎细胞因子CXCL10诱导的炎症与抗炎细胞因子IL-38介导的适当免疫调节之间的平衡,似乎能产生足够的免疫环境来战胜SARS-CoV-2感染,而不会引发有害的炎症反应。本研究支持这样一种观点,即分析单一细胞因子不足以确定像COVID-19这样的复杂疾病的预后,而结合生物信息学分析、考虑更广泛免疫谱的不同策略,是预测SARS-CoV-2感染住院患者预后更可靠的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9461/9530472/d17d101015ca/fmed-09-987182-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验