Suppr超能文献

人工智能辅助轮廓编辑的概念验证研究

A Proof-of-Concept Study of Artificial Intelligence-assisted Contour Editing.

作者信息

Bai Ti, Balagopal Anjali, Dohopolski Michael, Morgan Howard E, McBeth Rafe, Tan Jun, Lin Mu-Han, Sher David J, Nguyen Dan, Jiang Steve

机构信息

Department of Radiation Oncology, University of Texas Southwestern Medical Center, 2201 Inwood Rd, Dallas, TX 75390-9187 (T.B., A.B., M.D., H.E.M., J.T., M.H.L., D.J.S., D.N., S.J.); and Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pa (R.M.).

出版信息

Radiol Artif Intell. 2022 Aug 3;4(5):e210214. doi: 10.1148/ryai.210214. eCollection 2022 Sep.

Abstract

PURPOSE

To present a concept called artificial intelligence-assisted contour editing (AIACE) and demonstrate its feasibility.

MATERIALS AND METHODS

The conceptual workflow of AIACE is as follows: Given an initial contour that requires clinician editing, the clinician indicates where large editing is needed, and a trained deep learning model uses this input to update the contour. This process repeats until a clinically acceptable contour is achieved. In this retrospective, proof-of-concept study, the authors demonstrated the concept on two-dimensional (2D) axial CT images from three head-and-neck cancer datasets by simulating the interaction with the AIACE model to mimic the clinical environment. The input at each iteration was one mouse click on the desired location of the contour segment. Model performance is quantified with the Dice similarity coefficient (DSC) and 95th percentile of Hausdorff distance (HD95) based on three datasets with sample sizes of 10, 28, and 20 patients.

RESULTS

The average DSCs and HD95 values of the automatically generated initial contours were 0.82 and 4.3 mm, 0.73 and 5.6 mm, and 0.67 and 11.4 mm for the three datasets, which were improved to 0.91 and 2.1 mm, 0.86 and 2.5 mm, and 0.86 and 3.3 mm, respectively, with three mouse clicks. Each deep learning-based contour update required about 20 msec.

CONCLUSION

The authors proposed the newly developed AIACE concept, which uses deep learning models to assist clinicians in editing contours efficiently and effectively, and demonstrated its feasibility by using 2D axial CT images from three head-and-neck cancer datasets. Segmentation, Convolutional Neural Network (CNN), CT, Deep Learning Algorithms © RSNA, 2022.

摘要

目的

提出一种名为人工智能辅助轮廓编辑(AIACE)的概念并证明其可行性。

材料与方法

AIACE的概念工作流程如下:给定一个需要临床医生编辑的初始轮廓,临床医生指出需要大量编辑的位置,一个经过训练的深度学习模型利用此输入来更新轮廓。这个过程重复进行,直到获得临床可接受的轮廓。在这项回顾性概念验证研究中,作者通过模拟与AIACE模型的交互以模拟临床环境,在来自三个头颈癌数据集的二维(2D)轴向CT图像上演示了该概念。每次迭代的输入是在轮廓段的期望位置上点击一次鼠标。基于样本量分别为10、28和20名患者的三个数据集,使用骰子相似系数(DSC)和豪斯多夫距离的第95百分位数(HD95)对模型性能进行量化。

结果

对于三个数据集,自动生成的初始轮廓的平均DSC值和HD95值分别为0.82和4.3毫米、0.73和5.6毫米、0.67和11.4毫米,经过三次鼠标点击后分别提高到0.91和2.1毫米、0.86和2.5毫米、0.86和3.3毫米。基于深度学习的每次轮廓更新大约需要20毫秒。

结论

作者提出了新开发的AIACE概念,该概念使用深度学习模型有效且高效地协助临床医生编辑轮廓,并通过使用来自三个头颈癌数据集的二维轴向CT图像证明了其可行性。分割、卷积神经网络(CNN)、CT、深度学习算法 © RSNA,2022年。

相似文献

1
A Proof-of-Concept Study of Artificial Intelligence-assisted Contour Editing.人工智能辅助轮廓编辑的概念验证研究
Radiol Artif Intell. 2022 Aug 3;4(5):e210214. doi: 10.1148/ryai.210214. eCollection 2022 Sep.

引用本文的文献

本文引用的文献

4
UNet++: A Nested U-Net Architecture for Medical Image Segmentation.U-Net++:一种用于医学图像分割的嵌套U-Net架构。
Deep Learn Med Image Anal Multimodal Learn Clin Decis Support (2018). 2018 Sep;11045:3-11. doi: 10.1007/978-3-030-00889-5_1. Epub 2018 Sep 20.
5
Deep High-Resolution Representation Learning for Visual Recognition.用于视觉识别的深度高分辨率表征学习
IEEE Trans Pattern Anal Mach Intell. 2021 Oct;43(10):3349-3364. doi: 10.1109/TPAMI.2020.2983686. Epub 2021 Sep 2.
7
A Survey of Graph Cuts/Graph Search Based Medical Image Segmentation.基于图割/图搜索的医学图像分割综述。
IEEE Rev Biomed Eng. 2018;11:112-124. doi: 10.1109/RBME.2018.2798701. Epub 2018 Jan 26.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验