IEEE Rev Biomed Eng. 2018;11:112-124. doi: 10.1109/RBME.2018.2798701. Epub 2018 Jan 26.
Medical image segmentation is a fundamental and challenging problem for analyzing medical images. Among different existing medical image segmentation methods, graph-based approaches are relatively new and show good features in clinical applications. In the graph-based method, pixels or regions in the original image are interpreted into nodes in a graph. By considering Markov random field to model the contexture information of the image, the medical image segmentation problem can be transformed into a graph-based energy minimization problem. This problem can be solved by the use of minimum s-t cut/ maximum flow algorithm. This review is devoted to cut-based medical segmentation methods, including graph cuts and graph search for region and surface segmentation. Different varieties of cut-based methods, including graph-cuts-based methods, model integrated graph cuts methods, graph-search-based methods, and graph search/graph cuts based methods, are systematically reviewed. Graph cuts and graph search with deep learning technique are also discussed.
医学图像分割是分析医学图像的一个基本且具有挑战性的问题。在现有的不同医学图像分割方法中,基于图的方法相对较新,并在临床应用中表现出良好的特性。在基于图的方法中,原始图像中的像素或区域被解释为图中的节点。通过考虑马尔可夫随机场来对图像的结构信息进行建模,可以将医学图像分割问题转化为基于图的能量最小化问题。这个问题可以通过最小割/最大流算法来解决。本综述致力于基于切割的医学分割方法,包括基于图切割的区域和表面分割的图搜索方法。我们系统地回顾了不同种类的基于切割的方法,包括基于图切割的方法、模型集成图切割方法、基于图搜索的方法以及基于图搜索/图切割的方法。我们还讨论了基于深度学习技术的图切割和图搜索。