Toet A, Blom J, Koenderink J J
Biol Cybern. 1987;57(1-2):127-36. doi: 10.1007/BF00318722.
The functional order of a collection of nervous elements is available to the system itself, as opposed to the anatomical geometrical order which exists only for external observers. It has been shown before (Part I) that covariances or coincidences in the signal activity of a neural net can be used in the construction of a simultaneous functional order in which a modality is represented as a concatenation of districts with a lattice structure. In this paper we will show how the resulting functional order in a nervous net can be related to the geometry of the underlying detector array. In particular, we will present an algorithm to construct an abstract geometrical complex from this functional order. The algebraic structure of this complex reflects the topological and geometrical structure of the underlying detector array. We will show how the activated subcomplexes of a complex can be related to segments of the detector array that are activated by the projection of a stimulus pattern. The homology of an abstract complex (and therefore of all of its subcomplexes) can be obtained from simple combinatorial operations on its coincidence scheme. Thus, both the geometry of a detector array and the topology of projections of stimulus patterns may have an objective existence for the neural system itself.
与仅对外界观察者存在的解剖学几何顺序不同,神经系统自身能够获取神经元件集合的功能顺序。之前(第一部分)已经表明,神经网络信号活动中的协方差或同时发生的情况可用于构建同步功能顺序,在该顺序中,一种模态被表示为具有晶格结构的区域的串联。在本文中,我们将展示神经网络中产生的功能顺序如何与底层探测器阵列的几何结构相关联。特别是,我们将提出一种算法,从这种功能顺序构建一个抽象几何复形。该复形的代数结构反映了底层探测器阵列的拓扑和几何结构。我们将展示一个复形的激活子复形如何与探测器阵列中由刺激模式投影激活的部分相关联。抽象复形(以及因此其所有子复形)的同调可以通过对其重合方案进行简单的组合运算得到。因此,探测器阵列的几何结构和刺激模式投影的拓扑结构对于神经系统自身而言可能具有客观存在性。