Lyu Hongqiang, Liu Erhu, Wu Zhifang, Li Yao, Liu Yuan, Yin Xiaoran
School of Automation Science and Engineering, Faculty of Electronic and Information Engineering, Xi'an Jiaotong University, Shaanxi 710049, China.
Department of Oncology, The Second Affiliated Hospital of Xi'an Jiaotong University, Shaanxi 710004, China.
Bioinformatics. 2022 Nov 30;38(23):5151-5159. doi: 10.1093/bioinformatics/btac670.
The emerging single-cell Hi-C technology provides opportunities to study dynamics of chromosomal organization. How to construct a pseudotime path using single-cell Hi-C contact matrices to order cells along developmental trajectory is a challenging topic, since these matrices produced by the technology are inherently high dimensional and sparse, they suffer from noises and biases, and the topology of trajectory underlying them may be diverse.
We present scHiCPTR, an unsupervised graph-based pipeline to infer pseudotime from single-cell Hi-C contact matrices. It provides a workflow consisting of imputation and embedding, graph construction, dual graph refinement, pseudotime calculation and result visualization. Beyond the few existing methods, scHiCPTR ties to optimize graph structure by two parallel procedures of graph pruning, which help reduce the spurious cell links resulted from noises and determine a global developmental directionality. Besides, it has an ability to handle developmental trajectories with multiple topologies, including linear, bifurcated and circular ones, and is competitive with methods developed for single-cell RNA-seq data. The comparative results tell that our scHiCPTR can achieve higher performance in pseudotime inference, and the inferred developmental trajectory exhibit a reasonable biological significance.
scHiCPTR is freely available at https://github.com/lhqxinghun/scHiCPTR.
Supplementary data are available at Bioinformatics online.
新兴的单细胞Hi-C技术为研究染色体组织动态提供了机会。如何利用单细胞Hi-C接触矩阵构建伪时间路径,以便沿着发育轨迹对细胞进行排序,是一个具有挑战性的课题,因为该技术产生的这些矩阵本质上是高维且稀疏的,它们存在噪声和偏差,并且其潜在的轨迹拓扑可能多种多样。
我们提出了scHiCPTR,一种基于无监督图的流程,用于从单细胞Hi-C接触矩阵推断伪时间。它提供了一个由插补和嵌入、图构建、对偶图细化、伪时间计算和结果可视化组成的工作流程。与现有的少数方法不同,scHiCPTR通过图剪枝的两个并行过程来优化图结构,这有助于减少由噪声导致的虚假细胞连接,并确定全局发育方向性。此外,它有能力处理具有多种拓扑结构的发育轨迹,包括线性、分叉和圆形轨迹,并且与为单细胞RNA测序数据开发的方法具有竞争力。比较结果表明,我们的scHiCPTR在伪时间推断方面可以实现更高的性能,并且推断出的发育轨迹具有合理的生物学意义。
scHiCPTR可在https://github.com/lhqxinghun/scHiCPTR上免费获取。
补充数据可在《生物信息学》在线获取。