Suppr超能文献

一种描述性标记基因方法用于单细胞拟时推断。

A descriptive marker gene approach to single-cell pseudotime inference.

机构信息

Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK.

Wellcome Trust Centre for Human Genetics University of Oxford, Oxford, UK.

出版信息

Bioinformatics. 2019 Jan 1;35(1):28-35. doi: 10.1093/bioinformatics/bty498.

Abstract

MOTIVATION

Pseudotime estimation from single-cell gene expression data allows the recovery of temporal information from otherwise static profiles of individual cells. Conventional pseudotime inference methods emphasize an unsupervised transcriptome-wide approach and use retrospective analysis to evaluate the behaviour of individual genes. However, the resulting trajectories can only be understood in terms of abstract geometric structures and not in terms of interpretable models of gene behaviour.

RESULTS

Here we introduce an orthogonal Bayesian approach termed 'Ouija' that learns pseudotimes from a small set of marker genes that might ordinarily be used to retrospectively confirm the accuracy of unsupervised pseudotime algorithms. Crucially, we model these genes in terms of switch-like or transient behaviour along the trajectory, allowing us to understand why the pseudotimes have been inferred and learn informative parameters about the behaviour of each gene. Since each gene is associated with a switch or peak time the genes are effectively ordered along with the cells, allowing each part of the trajectory to be understood in terms of the behaviour of certain genes. We demonstrate that this small panel of marker genes can recover pseudotimes that are consistent with those obtained using the entire transcriptome. Furthermore, we show that our method can detect differences in the regulation timings between two genes and identify 'metastable' states-discrete cell types along the continuous trajectories-that recapitulate known cell types.

AVAILABILITY AND IMPLEMENTATION

An open source implementation is available as an R package at http://www.github.com/kieranrcampbell/ouija and as a Python/TensorFlow package at http://www.github.com/kieranrcampbell/ouijaflow.

SUPPLEMENTARY INFORMATION

Supplementary data are available at Bioinformatics online.

摘要

动机

从单细胞基因表达数据中估计伪时间允许从个体细胞的静态剖面中恢复时间信息。传统的伪时间推断方法强调无监督的转录组范围方法,并使用回顾性分析来评估单个基因的行为。然而,由此产生的轨迹只能根据抽象的几何结构来理解,而不能根据基因行为的可解释模型来理解。

结果

在这里,我们引入了一种称为“ Ouija”的正交贝叶斯方法,该方法从一小部分标记基因中学习伪时间,这些标记基因通常用于回顾性地确认无监督伪时间算法的准确性。至关重要的是,我们根据轨迹上的开关样或瞬态行为来对这些基因进行建模,从而使我们能够理解为什么推断出伪时间,并了解每个基因行为的有用参数。由于每个基因都与沿轨迹的开关或峰值时间相关联,因此基因实际上与细胞一起排序,从而可以根据某些基因的行为来理解轨迹的各个部分。我们证明,这一小部分标记基因可以恢复与使用整个转录组获得的伪时间一致的伪时间。此外,我们表明,我们的方法可以检测两个基因之间的调控时间差异,并识别出沿连续轨迹的“亚稳态”状态-离散细胞类型,这些类型再现了已知的细胞类型。

可用性和实现

一个开源实现可作为 R 包在 http://www.github.com/kieranrcampbell/ouija 获得,并作为 Python/TensorFlow 包在 http://www.github.com/kieranrcampbell/ouijaflow 获得。

补充信息

补充数据可在生物信息学在线获得。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0739/6298060/1b938ae8e3a8/bty498f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验