文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

一种描述性标记基因方法用于单细胞拟时推断。

A descriptive marker gene approach to single-cell pseudotime inference.

机构信息

Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK.

Wellcome Trust Centre for Human Genetics University of Oxford, Oxford, UK.

出版信息

Bioinformatics. 2019 Jan 1;35(1):28-35. doi: 10.1093/bioinformatics/bty498.


DOI:10.1093/bioinformatics/bty498
PMID:29939207
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC6298060/
Abstract

MOTIVATION: Pseudotime estimation from single-cell gene expression data allows the recovery of temporal information from otherwise static profiles of individual cells. Conventional pseudotime inference methods emphasize an unsupervised transcriptome-wide approach and use retrospective analysis to evaluate the behaviour of individual genes. However, the resulting trajectories can only be understood in terms of abstract geometric structures and not in terms of interpretable models of gene behaviour. RESULTS: Here we introduce an orthogonal Bayesian approach termed 'Ouija' that learns pseudotimes from a small set of marker genes that might ordinarily be used to retrospectively confirm the accuracy of unsupervised pseudotime algorithms. Crucially, we model these genes in terms of switch-like or transient behaviour along the trajectory, allowing us to understand why the pseudotimes have been inferred and learn informative parameters about the behaviour of each gene. Since each gene is associated with a switch or peak time the genes are effectively ordered along with the cells, allowing each part of the trajectory to be understood in terms of the behaviour of certain genes. We demonstrate that this small panel of marker genes can recover pseudotimes that are consistent with those obtained using the entire transcriptome. Furthermore, we show that our method can detect differences in the regulation timings between two genes and identify 'metastable' states-discrete cell types along the continuous trajectories-that recapitulate known cell types. AVAILABILITY AND IMPLEMENTATION: An open source implementation is available as an R package at http://www.github.com/kieranrcampbell/ouija and as a Python/TensorFlow package at http://www.github.com/kieranrcampbell/ouijaflow. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

摘要

动机:从单细胞基因表达数据中估计伪时间允许从个体细胞的静态剖面中恢复时间信息。传统的伪时间推断方法强调无监督的转录组范围方法,并使用回顾性分析来评估单个基因的行为。然而,由此产生的轨迹只能根据抽象的几何结构来理解,而不能根据基因行为的可解释模型来理解。

结果:在这里,我们引入了一种称为“ Ouija”的正交贝叶斯方法,该方法从一小部分标记基因中学习伪时间,这些标记基因通常用于回顾性地确认无监督伪时间算法的准确性。至关重要的是,我们根据轨迹上的开关样或瞬态行为来对这些基因进行建模,从而使我们能够理解为什么推断出伪时间,并了解每个基因行为的有用参数。由于每个基因都与沿轨迹的开关或峰值时间相关联,因此基因实际上与细胞一起排序,从而可以根据某些基因的行为来理解轨迹的各个部分。我们证明,这一小部分标记基因可以恢复与使用整个转录组获得的伪时间一致的伪时间。此外,我们表明,我们的方法可以检测两个基因之间的调控时间差异,并识别出沿连续轨迹的“亚稳态”状态-离散细胞类型,这些类型再现了已知的细胞类型。

可用性和实现:一个开源实现可作为 R 包在 http://www.github.com/kieranrcampbell/ouija 获得,并作为 Python/TensorFlow 包在 http://www.github.com/kieranrcampbell/ouijaflow 获得。

补充信息:补充数据可在生物信息学在线获得。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0739/6298060/cc1a3f8b3794/bty498f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0739/6298060/1b938ae8e3a8/bty498f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0739/6298060/06b545895a3f/bty498f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0739/6298060/86308252768c/bty498f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0739/6298060/89936a7389f6/bty498f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0739/6298060/cc1a3f8b3794/bty498f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0739/6298060/1b938ae8e3a8/bty498f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0739/6298060/06b545895a3f/bty498f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0739/6298060/86308252768c/bty498f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0739/6298060/89936a7389f6/bty498f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0739/6298060/cc1a3f8b3794/bty498f5.jpg

相似文献

[1]
A descriptive marker gene approach to single-cell pseudotime inference.

Bioinformatics. 2019-1-1

[2]
psupertime: supervised pseudotime analysis for time-series single-cell RNA-seq data.

Bioinformatics. 2022-6-24

[3]
scShaper: an ensemble method for fast and accurate linear trajectory inference from single-cell RNA-seq data.

Bioinformatics. 2022-2-7

[4]
switchde: inference of switch-like differential expression along single-cell trajectories.

Bioinformatics. 2017-4-15

[5]
HopLand: single-cell pseudotime recovery using continuous Hopfield network-based modeling of Waddington's epigenetic landscape.

Bioinformatics. 2017-7-15

[6]
Trajectory Inference with Cell-Cell Interactions (TICCI): intercellular communication improves the accuracy of trajectory inference methods.

Bioinformatics. 2025-2-4

[7]
A robust and accurate single-cell data trajectory inference method using ensemble pseudotime.

BMC Bioinformatics. 2023-2-20

[8]
Single-cell generalized trend model (scGTM): a flexible and interpretable model of gene expression trend along cell pseudotime.

Bioinformatics. 2022-8-10

[9]
Inferring Tree-Shaped Single-Cell Trajectories with Totem.

Methods Mol Biol. 2024

[10]
Network inference with Granger causality ensembles on single-cell transcriptomics.

Cell Rep. 2022-2-8

引用本文的文献

[1]
A semi-supervised Bayesian approach for marker gene trajectory inference from single-cell RNA-seq data.

Bioinformatics. 2025-9-1

[2]
: Single-cell immune repertoire trajectory analysis in R.

Comput Struct Biotechnol J. 2025-6-30

[3]
Trajectory inference from single-cell genomics data with a process time model.

PLoS Comput Biol. 2025-1-21

[4]
scRNA-seq Reveals Novel Genetic Pathways and Sex Chromosome Regulation in Tribolium Spermatogenesis.

Genome Biol Evol. 2024-3-2

[5]
Modeling gene expression cascades during cell state transitions.

iScience. 2024-3-4

[6]
Defining the identity and the niches of epithelial stem cells with highly pleiotropic multilineage potency in the human thymus.

Dev Cell. 2023-11-20

[7]
Trajectory reconstruction identifies dysregulation of perinatal maturation programs in pluripotent stem cell-derived cardiomyocytes.

Cell Rep. 2023-4-25

[8]
BLTSA: pseudotime prediction for single cells by branched local tangent space alignment.

Bioinformatics. 2023-2-3

[9]
Length biases in single-cell RNA sequencing of pre-mRNA.

Biophys Rep (N Y). 2022-12-27

[10]
A comprehensive single-cell map of T cell exhaustion-associated immune environments in human breast cancer.

Nat Commun. 2023-1-6

本文引用的文献

[1]
Stan: A Probabilistic Programming Language.

J Stat Softw. 2017

[2]
Deterministic column subset selection for single-cell RNA-Seq.

PLoS One. 2019-1-25

[3]
Probabilistic modeling of bifurcations in single-cell gene expression data using a Bayesian mixture of factor analyzers.

Wellcome Open Res. 2017-3-15

[4]
Single-Cell Transcriptomic Analysis Defines Heterogeneity and Transcriptional Dynamics in the Adult Neural Stem Cell Lineage.

Cell Rep. 2017-1-17

[5]
Scater: pre-processing, quality control, normalization and visualization of single-cell RNA-seq data in R.

Bioinformatics. 2017-4-15

[6]
switchde: inference of switch-like differential expression along single-cell trajectories.

Bioinformatics. 2017-4-15

[7]
Order Under Uncertainty: Robust Differential Expression Analysis Using Probabilistic Models for Pseudotime Inference.

PLoS Comput Biol. 2016-11-21

[8]
ImpulseDE: detection of differentially expressed genes in time series data using impulse models.

Bioinformatics. 2017-3-1

[9]
Diffusion pseudotime robustly reconstructs lineage branching.

Nat Methods. 2016-8-29

[10]
Single-cell RNA-seq reveals novel regulators of human embryonic stem cell differentiation to definitive endoderm.

Genome Biol. 2016-8-17

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索