Suppr超能文献

通过 T7 聚合酶/CRISPR dCas9 设计在 中实现模块化、合成布尔逻辑门。

Modular, Synthetic Boolean Logic Gates Enabled in through T7 Polymerases/CRISPR dCas9 Designs.

机构信息

McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E Dean Keeton Street Stop C0400, Austin, Texas 78712, United States.

Institute for Cellular and Molecular Biology, The University of Texas at Austin, 2500 Speedway Avenue, Austin, Texas 78712, United States.

出版信息

ACS Synth Biol. 2022 Oct 21;11(10):3414-3425. doi: 10.1021/acssynbio.2c00327. Epub 2022 Oct 7.

Abstract

Synthetic control of gene expression, whether simply promoter selection or higher-order Boolean-style logic, is an important tool for metabolic engineering and synthetic biology. This work develops a suite of orthogonal T7 RNA polymerase systems capable of exerting AND/OR switchlike control over transcription in the yeast. When linked with CRISPR dCas9-based regulation systems, more complex circuitry is possible including AND/OR/NAND/NOR style control in response to combinations of extracellular copper and galactose. Additionally, we demonstrate that these T7 system designs are modular and can accommodate alternative stimuli sensing as demonstrated through blue light induction. These designs should greatly reduce the time and labor necessary for developing Boolean gene circuits in yeast with novel applications including metabolic pathway control in the future.

摘要

基因表达的人工合成控制,无论是简单的启动子选择还是更高级的布尔逻辑风格,都是代谢工程和合成生物学的重要工具。本工作开发了一套正交的 T7 RNA 聚合酶系统,能够在酵母中对转录进行 AND/OR 开关式控制。当与基于 CRISPR dCas9 的调控系统结合使用时,更复杂的电路成为可能,包括对外源铜和半乳糖组合的响应的 AND/OR/NAND/NOR 样式控制。此外,我们证明这些 T7 系统设计是模块化的,可以适应替代的刺激感应,如通过蓝光诱导来证明。这些设计应该大大减少在酵母中开发新型布尔基因电路所需的时间和劳动力,未来包括代谢途径控制在内的新应用。

相似文献

1
Modular, Synthetic Boolean Logic Gates Enabled in through T7 Polymerases/CRISPR dCas9 Designs.
ACS Synth Biol. 2022 Oct 21;11(10):3414-3425. doi: 10.1021/acssynbio.2c00327. Epub 2022 Oct 7.
2
Transcriptional reprogramming in yeast using dCas9 and combinatorial gRNA strategies.
Microb Cell Fact. 2017 Mar 15;16(1):46. doi: 10.1186/s12934-017-0664-2.
3
Digital logic circuits in yeast with CRISPR-dCas9 NOR gates.
Nat Commun. 2017 May 25;8:15459. doi: 10.1038/ncomms15459.
4
Utilizing RNA origami scaffolds in Saccharomyces cerevisiae for dCas9-mediated transcriptional control.
Nucleic Acids Res. 2022 Jul 8;50(12):7176-7187. doi: 10.1093/nar/gkac470.
6
CRISPR system in the yeast Saccharomyces cerevisiae and its application in the bioproduction of useful chemicals.
World J Microbiol Biotechnol. 2019 Jul 6;35(7):111. doi: 10.1007/s11274-019-2688-8.
8
A CRISPR-dCas Toolbox for Genetic Engineering and Synthetic Biology.
J Mol Biol. 2019 Jan 4;431(1):34-47. doi: 10.1016/j.jmb.2018.06.037. Epub 2018 Jun 26.
9
Chromosome drives via CRISPR-Cas9 in yeast.
Nat Commun. 2020 Aug 28;11(1):4344. doi: 10.1038/s41467-020-18222-0.

引用本文的文献

1
Innovations, Challenges and Future Directions of T7RNA Polymerase in Microbial Cell Factories.
ACS Synth Biol. 2025 May 16;14(5):1381-1396. doi: 10.1021/acssynbio.5c00139. Epub 2025 Apr 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验