Duke University Medical Center, United States of America.
University of North Carolina at Charlotte, United States of America.
Phys Med Biol. 2022 Oct 21;67(21). doi: 10.1088/1361-6560/ac9882.
. Deep learning (DL) models for fluence map prediction (FMP) have great potential to reduce treatment planning time in intensity-modulated radiation therapy (IMRT) by avoiding the lengthy inverse optimization process. This study aims to improve the rigor of input feature design in a DL-FMP model by examining how different designs of input features influence model prediction performance.. This study included 231 head-and-neck intensity-modulated radiation therapy patients. Three input feature designs were investigated. The first design (D1) assumed that information of all critical structures from all beam angles should be combined to predict fluence maps. The second design (D2) assumed that local anatomical information was sufficient for predicting radiation intensity of a beamlet at a respective beam angle. The third design (D3) assumed the need for both local anatomical information and inter-beam modulation to predict radiation intensity values of the beamlets that intersect at a voxel. For each input design, we tailored the DL model accordingly. All models were trained using the same set of ground truth plans (GT plans). The plans generated by DL models (DL plans) were analyzed using key dose-volume metrics. One-way ANOVA with multiple comparisons correction (Bonferroni method) was performed (significance level = 0.05).. For PTV-related metrics, all DL plans had significantly higher maximum dose ( < 0.001), conformity index ( < 0.001), and heterogeneity index ( < 0.001) compared to GT plans, with D2 being the worst performer. Meanwhile, except for cord+5 mm ( < 0.001), DL plans of all designs resulted in OAR dose metrics that are comparable to those of GT plans.. Local anatomical information contains most of the information that DL models need to predict fluence maps for clinically acceptable OAR sparing. Input features from beam angles are needed to achieve the best PTV coverage. These results provide valuable insights for further improvement of DL-FMP models and DL models in general.
. 深度学习(DL)模型在通量图预测(FMP)方面具有很大的潜力,可以通过避免冗长的逆优化过程来减少调强放射治疗(IMRT)的治疗计划时间。本研究旨在通过检查不同输入特征设计如何影响模型预测性能,来提高 DL-FMP 模型中输入特征设计的严谨性。.. 这项研究包括 231 名头颈部调强放射治疗患者。研究了三种输入特征设计。第一种设计(D1)假设需要结合来自所有射束角度的所有关键结构的信息来预测通量图。第二种设计(D2)假设局部解剖学信息足以预测相应射束角度的束流强度。第三种设计(D3)假设需要局部解剖学信息和束间调制来预测在体素处相交的束流的辐射强度值。对于每种输入设计,我们相应地调整了 DL 模型。所有模型均使用相同的一组基准计划(GT 计划)进行训练。使用关键剂量体积指标分析由 DL 模型生成的计划(DL 计划)。采用具有多重比较校正(Bonferroni 方法)的单向方差分析(显著性水平=0.05)。. 对于 PTV 相关指标,所有 DL 计划的最大剂量(<0.001)、适形指数(<0.001)和不均匀性指数(<0.001)均显著高于 GT 计划,其中 D2 的表现最差。同时,除了脊髓+5mm(<0.001)外,所有设计的 DL 计划的 OAR 剂量指标与 GT 计划相当。. 局部解剖学信息包含了 DL 模型预测临床可接受的 OAR 保护的通量图所需的大部分信息。需要从射束角度输入特征来实现最佳的 PTV 覆盖。这些结果为进一步改进 DL-FMP 模型和一般的 DL 模型提供了有价值的见解。