Bohara Gyanendra, Sadeghnejad Barkousaraie Azar, Jiang Steve, Nguyen Dan
Medical Artificial Intelligence and Automation (MAIA) Laboratory, Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, TX, 75390, USA.
Med Phys. 2020 Sep;47(9):3898-3912. doi: 10.1002/mp.14374. Epub 2020 Aug 2.
Many researchers have developed deep learning models for predicting clinical dose distributions and Pareto optimal dose distributions. Models for predicting Pareto optimal dose distributions have generated optimal plans in real time using anatomical structures and static beam orientations. However, Pareto optimal dose prediction for intensity-modulated radiation therapy (IMRT) prostate planning with variable beam numbers and orientations has not yet been investigated. We propose to develop a deep learning model that can predict Pareto optimal dose distributions by using any given set of beam angles, along with patient anatomy, as input to train the deep neural networks. We implement and compare two deep learning networks that predict with two different beam configuration modalities.
We generated Pareto optimal plans for 70 patients with prostate cancer. We used fluence map optimization to generate 500 IMRT plans that sampled the Pareto surface for each patient, for a total of 35 000 plans. We studied and compared two different models, Models I and II. Although they both used the same anatomical structures - including the planning target volume (PTV), organs at risk (OARs), and body - these models were designed with two different methods for representing beam angles. Model I directly uses beam angles as a second input to the network as a binary vector. Model II converts the beam angles into beam doses that are conformal to the PTV. We divided the 70 patients into 54 training, 6 validation, and 10 testing patients, thus yielding 27 000 training, 3000 validation, and 5000 testing plans. Mean square loss (MSE) was taken as the loss function. We used the Adam optimizer with a default learning rate of 0.01 to optimize the network's performance. We evaluated the models' performance by comparing their predicted dose distributions with the ground truth (Pareto optimal) dose distribution, in terms of dose volume histogram (DVH) plots and evaluation metrics such as PTV D , D , D , D , D , D , Paddick Conformation Number, R50, and Homogeneity index.
Our deep learning models predicted voxel-level dose distributions that precisely matched the ground truth dose distributions. The DVHs generated also precisely matched the ground truth. Evaluation metrics such as PTV statistics, dose conformity, dose spillage (R50), and homogeneity index also confirmed the accuracy of PTV curves on the DVH. Quantitatively, Model I's prediction error of 0.043 (confirmation), 0.043 (homogeneity), 0.327 (R50), 2.80% (D95), 3.90% (D98), 0.6% (D50), and 1.10% (D2) was lower than that of Model II, which obtained 0.076 (confirmation), 0.058 (homogeneity), 0.626 (R50), 7.10% (D95), 6.50% (D98), 8.40% (D50), and 6.30% (D2). Model I also outperformed Model II in terms of the mean dose error and the max dose error on the PTV, bladder, rectum, left femoral head, and right femoral head.
Treatment planners who use our models will be able to use deep learning to control the trade-offs between the PTV and OAR weights, as well as the beam number and configurations in real time. Our dose prediction methods provide a stepping stone to building automatic IMRT treatment planning.
许多研究人员已经开发出用于预测临床剂量分布和帕累托最优剂量分布的深度学习模型。用于预测帕累托最优剂量分布的模型利用解剖结构和静态射束方向实时生成最优计划。然而,尚未对具有可变射束数量和方向的调强放射治疗(IMRT)前列腺计划的帕累托最优剂量预测进行研究。我们提议开发一种深度学习模型,该模型可以通过使用任何给定的射束角度集以及患者解剖结构作为输入来训练深度神经网络,从而预测帕累托最优剂量分布。我们实现并比较了两种以两种不同射束配置模式进行预测的深度学习网络。
我们为70例前列腺癌患者生成了帕累托最优计划。我们使用通量图优化来生成500个IMRT计划,这些计划对每位患者的帕累托曲面进行了采样,总共35000个计划。我们研究并比较了两种不同的模型,模型I和模型II。尽管它们都使用相同的解剖结构——包括计划靶体积(PTV)、危及器官(OARs)和身体——但这些模型采用两种不同的方法来表示射束角度。模型I直接将射束角度作为网络的第二个输入,以二进制向量形式输入。模型II将射束角度转换为与PTV适形的射束剂量。我们将70例患者分为54例训练患者、6例验证患者和10例测试患者,从而得到27000个训练计划、3000个验证计划和5000个测试计划。均方损失(MSE)用作损失函数。我们使用默认学习率为0.01的Adam优化器来优化网络性能。我们通过将模型预测的剂量分布与真实(帕累托最优)剂量分布进行比较,根据剂量体积直方图(DVH)图以及诸如PTV D 、D 、D 、D 、D 、D 、帕迪克适形数、R50和均匀性指数等评估指标来评估模型性能。
我们的深度学习模型预测的体素级剂量分布与真实剂量分布精确匹配。生成的DVH也与真实情况精确匹配。诸如PTV统计量、剂量适形性、剂量溢出(R50)和均匀性指数等评估指标也证实了DVH上PTV曲线的准确性。在定量方面,模型I的预测误差为0.043(适形性)、0.043(均匀性)、0.327(R50)、2.80%(D95)、3.90%(D98)、0.6%(D50)和1.10%(D2),低于模型II,模型II的相应误差分别为0.076(适形性)、0.058(均匀性)、0.626(R50)、7.10%(D95)、6.50%(D98)、8.40%(D50)和6.30%(D2)。在PTV、膀胱、直肠、左股骨头和右股骨头上的平均剂量误差和最大剂量误差方面,模型I也优于模型II。
使用我们模型的治疗计划者将能够利用深度学习实时控制PTV和OAR权重之间的权衡,以及射束数量和配置。我们的剂量预测方法为构建自动IMRT治疗计划奠定了基础。