Department of Physics and Earth Sciences, Jacobs University Bremen, Campus Ring 1, 28759, Bremen, Germany.
Photosynth Res. 2023 Apr;156(1):147-162. doi: 10.1007/s11120-022-00969-w. Epub 2022 Oct 7.
In this mini review, we focus on recent advances in the atomistic modeling of biological light-harvesting (LH) complexes. Because of their size and sophisticated electronic structures, multiscale methods are required to investigate the dynamical and spectroscopic properties of such complexes. The excitation energies, in this context also known as site energies, excitonic couplings, and spectral densities are key quantities which usually need to be extracted to be able to determine the exciton dynamics and spectroscopic properties. The recently developed multiscale approach based on the numerically efficient density functional tight-binding framework followed by excited state calculations has been shown to be superior to the scheme based on pure classical molecular dynamics simulations. The enhanced approach, which improves the description of the internal vibrational dynamics of the pigment molecules, yields spectral densities in good agreement with the experimental counterparts for various bacterial and plant LH systems. Here, we provide a brief overview of those results and described the theoretical foundation of the multiscale protocol.
在这篇迷你综述中,我们专注于生物光捕获 (LH) 复合物的原子建模的最新进展。由于其尺寸和复杂的电子结构,需要使用多尺度方法来研究这些复合物的动力学和光谱性质。在这种情况下,激发能(也称为位能、激子耦合和光谱密度)是关键的数量,通常需要提取这些数量才能确定激子动力学和光谱性质。最近开发的基于数值有效的密度泛函紧束缚框架的多尺度方法,接着是激发态计算,已被证明优于基于纯经典分子动力学模拟的方案。这种改进的方法提高了对色素分子内部振动动力学的描述,对于各种细菌和植物 LH 系统,它产生的光谱密度与实验结果非常吻合。在这里,我们简要概述了这些结果,并描述了多尺度协议的理论基础。