Scrutton Nigel, Hay Sam, Heyes Derren
Department of Chemistry, The University of Manchester, Manchester, UK.
Philos Trans A Math Phys Eng Sci. 2025 May 8;383(2296):20230380. doi: 10.1098/rsta.2023.0380.
Enzyme biocatalysis is being industrialized at a phenomenal rate. Biocatalysis offers routes to chemical transformations that avoid the use of expensive metal catalysts, high temperatures and pressures, while providing impressive enantio-, regio- and chemo-selectivities. Working individually or as cascades, in live cells or cell-free preparations, to manufacture everyday chemicals, materials, healthcare products, fuels and pharmaceuticals and in diagnostic and industrial sensing applications, enzymes are key enablers in a circular bioeconomy. An ability to exploit and tailor biocatalysts rapidly and predictably requires knowledge of structure-mechanism relationships and the physical chemistry of enzyme action. This knowledge has advanced since our millennium article on this topic (Sutcliffe and Scrutton . 2000. 358, 367-386). Here, we discuss an emerging frontier-enzyme photobiocatalysis. Photoenzymes are rarely found in nature. This limits 'difficult-to-achieve' reactions in biology that are generally accessible to chemical photocatalysts. We discuss here the emergence of photobiocatalysis as a new frontier. We review knowledge of natural photoenzymes and identify challenges and limitations in their use as photobiocatalysts. We consider emerging reports on repurposing natural enzymes as photobiocatalysts. We also discuss prospects for de novo design of photobiocatalysts which as a general concept would transform catalysis science.This article is part of the theme issue 'Science into the next millennium: 25 years on'.
酶生物催化正在以惊人的速度实现工业化。生物催化提供了化学转化的途径,避免了使用昂贵的金属催化剂、高温和高压,同时具有令人印象深刻的对映体、区域和化学选择性。无论是单独作用还是作为级联反应,在活细胞或无细胞制剂中,用于制造日常化学品、材料、医疗保健产品、燃料和药品以及在诊断和工业传感应用中,酶都是循环生物经济的关键推动者。要快速且可预测地开发和定制生物催化剂,需要了解结构-机制关系以及酶作用的物理化学知识。自我们关于该主题的千禧年文章(Sutcliffe和Scrutton,2000年,358卷,367 - 386页)发表以来,这方面的知识有了进一步发展。在这里,我们讨论一个新兴领域——酶光生物催化。光酶在自然界中很少见。这限制了生物学中一些“难以实现”的反应,而这些反应通常可通过化学光催化剂实现。我们在此讨论光生物催化作为一个新领域的出现。我们回顾了天然光酶的知识,并确定了将其用作光生物催化剂的挑战和局限性。我们考虑了关于将天然酶重新用作光生物催化剂的新报道。我们还讨论了光生物催化剂从头设计的前景,这一总体概念将改变催化科学。本文是主题特刊“科学进入下一个千年:25年后”的一部分。