Key Laboratory of Catalysis and Materials Science of Hubei Province, College of Resources and Environmental Science, South-Central Minzu University, Wuhan 430074, Hubei, China.
Key Laboratory of Catalysis and Materials Science of Hubei Province, College of Resources and Environmental Science, South-Central Minzu University, Wuhan 430074, Hubei, China.
Spectrochim Acta A Mol Biomol Spectrosc. 2023 Jan 15;285:121943. doi: 10.1016/j.saa.2022.121943. Epub 2022 Oct 3.
In this article, a novel metal-organic framework, namely MIL-101(Fe), was firstly synthesized via a facile method. In the presence of HO, MIL-101(Fe) possesses excellent peroxidase-like activity toward the classical chromogenic substrate, N,N-Diethyl-p-phenylenediamine sulfate salt (DPD). The substitution of Fe enhances the construction of Fe(II)-oxo nodes and accelerates electrons transfer between DPD and HO, thereby improving the peroxidase-mimicking catalytic activity of MIL-101(Fe) nanoenzyme. Additionally, DPD molecules could be adsorbed readily onto the surface of the nanoparticles due to the π-π interaction. The study of Michaelis constant indicates that the MIL-101(Fe) exhibits a higher affinity towards DPD (0.16 mM) in contrast to horseradish peroxidase (0.78 mM). In view of the impressive catalytic performance of MIL-101(Fe), two reliable monitoring platforms for the rapid detection of HO and glucose were established with extremely low detection limits of 18.04 nM and 0.87 μM in the ranges of 40-5000 nM and 1.2-300 μM, respectively. The study of the catalytic mechanism indicates that DPD oxidation is attributed to the hydroxyl radical (·OH) produced from the decomposition of HO catalyzed by MIL-101(Fe). Furthermore, the developed sensor indicates high selectivity and stability and can be effectively appropriate for the detection of HO and glucose in real samples. This work not only provides a novel nanozyme with superior catalytic performance for biological analysis, but also broadens the application field of MIL-101(Fe) material.
在本文中,我们首次通过一种简便的方法合成了一种新型的金属有机骨架材料 MIL-101(Fe)。在 HO 的存在下,MIL-101(Fe)对经典显色底物 N,N-二乙基对苯二胺硫酸盐(DPD)具有优异的过氧化物酶样活性。Fe 的取代增强了 Fe(II)-氧原子的构建,并加速了 DPD 和 HO 之间的电子转移,从而提高了 MIL-101(Fe)纳米酶的过氧化物酶模拟催化活性。此外,由于π-π相互作用,DPD 分子可以很容易地被吸附到纳米粒子的表面上。米氏常数的研究表明,MIL-101(Fe)对 DPD(0.16 mM)的亲和力高于辣根过氧化物酶(0.78 mM)。鉴于 MIL-101(Fe)令人印象深刻的催化性能,我们建立了两种可靠的监测平台,用于快速检测 HO 和葡萄糖,其检测限分别在 40-5000 nM 和 1.2-300 μM 的范围内低至 18.04 nM 和 0.87 μM。催化机制的研究表明,DPD 的氧化归因于 HO 催化分解产生的羟基自由基(·OH)。此外,所开发的传感器具有高选择性和稳定性,可有效适用于实际样品中 HO 和葡萄糖的检测。这项工作不仅为生物分析提供了一种具有优异催化性能的新型纳米酶,而且拓宽了 MIL-101(Fe)材料的应用领域。