State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China.
Shandong Institute of Metrology, Jinan 250014, China.
Molecules. 2024 Aug 7;29(16):3739. doi: 10.3390/molecules29163739.
In recent years, nanozymes have attracted particular interest and attention as catalysts because of their high catalytic efficiency and stability compared with natural enzymes, whereas how to use simple methods to further improve the catalytic activity of nanozymes is still challenging. In this work, we report a trimetallic metal-organic framework (MOF) based on Fe, Co and Ni, which was prepared by replacing partial original Fe nodes of the Fe-MOF with Co and Ni nodes. The obtained FeCoNi-MOF shows both oxidase-like activity and peroxidase-like activity. FeCoNi-MOF can not only oxidize the chromogenic substrate 3,3,5,5-tetramethylbenzidine (TMB) to its blue oxidation product oxTMB directly, but also catalyze the activation of HO to oxidize the TMB. Compared with corresponding monometallic/bimetallic MOFs, the FeCoNi-MOF with equimolar metals hereby prepared exhibited higher peroxidase-like activity, faster colorimetric reaction speed (1.26-2.57 folds), shorter reaction time (20 min) and stronger affinity with TMB (2.50-5.89 folds) and HO (1.73-3.94 folds), owing to the splendid synergistic electron transfer effect between Fe, Co and Ni. Considering its outstanding advantages, a promising FeCoNi-MOF-based sensing platform has been designated for the colorimetric detection of the biomarker HO and environmental pollutant TP, and lower limits of detection (LODs) (1.75 μM for HO and 0.045 μM for TP) and wider linear ranges (6-800 μM for HO and 0.5-80 μM for TP) were obtained. In addition, the newly constructed colorimetric platform for TP has been applied successfully for the determination of TP in real water samples with average recoveries ranging from 94.6% to 112.1%. Finally, the colorimetric sensing platform based on FeCoNi-MOF is converted to a cost-effective paper strip sensor, which renders the detection of TP more rapid and convenient.
近年来,纳米酶作为催化剂因其比天然酶具有更高的催化效率和稳定性而受到特别关注和重视,然而如何用简单的方法进一步提高纳米酶的催化活性仍然具有挑战性。在这项工作中,我们报告了一种基于 Fe、Co 和 Ni 的三金属金属有机骨架(MOF),它是通过用 Co 和 Ni 节点取代 Fe-MOF 的部分原始 Fe 节点来制备的。所得到的 FeCoNi-MOF 表现出类氧化酶和类过氧化物酶活性。FeCoNi-MOF 不仅可以直接将显色底物 3,3,5,5-四甲基联苯胺(TMB)氧化为其蓝色氧化产物 oxTMB,还可以催化 HO 的激活以氧化 TMB。与相应的单金属/双金属 MOF 相比,在此制备的等摩尔金属的 FeCoNi-MOF 表现出更高的类过氧化物酶活性、更快的比色反应速度(1.26-2.57 倍)、更短的反应时间(20 分钟)和更强的与 TMB(2.50-5.89 倍)和 HO(1.73-3.94 倍)的亲和力,这是由于 Fe、Co 和 Ni 之间出色的协同电子转移效应。考虑到其卓越的优势,已经指定了一个有前途的基于 FeCoNi-MOF 的传感平台用于生物标志物 HO 和环境污染物 TP 的比色检测,并且获得了更低的检测限(HO 为 1.75 μM,TP 为 0.045 μM)和更宽的线性范围(HO 为 6-800 μM,TP 为 0.5-80 μM)。此外,新构建的用于 TP 的比色平台已成功应用于实际水样中 TP 的测定,平均回收率范围为 94.6%-112.1%。最后,基于 FeCoNi-MOF 的比色传感平台被转化为一种具有成本效益的纸条传感器,使 TP 的检测更加快速方便。
J Mater Chem B. 2020-10-21
Biosensors (Basel). 2025-7-29
J Mater Chem B. 2023-7-26
Anal Chem. 2023-7-4
ACS Appl Mater Interfaces. 2021-8-4