Suppr超能文献

儿童语言样本自动分析的多学科视角:我们将何去何从?

Multidisciplinary Perspectives on Automatic Analysis of Children's Language Samples: Where Do We Go from Here?

作者信息

Lüdtke Ulrike, Bornman Juan, de Wet Febe, Heid Ulrich, Ostermann Jörn, Rumberg Lars, van der Linde Jeannie, Ehlert Hanna

机构信息

Leibniz Lab for Relational Communication Research, Leibniz University Hannover, Hanover, Germany.

Centre for Augmentative and Alternative Communication, University of Pretoria, Pretoria, South Africa.

出版信息

Folia Phoniatr Logop. 2023;75(1):1-12. doi: 10.1159/000527427. Epub 2022 Oct 7.

Abstract

BACKGROUND

Language sample analysis (LSA) is invaluable to describe and understand child language use and development for clinical purposes and research. Digital tools supporting LSA are available, but many of the LSA steps have not been automated. Nevertheless, programs that include automatic speech recognition (ASR), the first step of LSA, have already reached mainstream applicability.

SUMMARY

To better understand the complexity, challenges, and future needs of automatic LSA from a technological perspective, including the tasks of transcribing, annotating, and analysing natural child language samples, this article takes on a multidisciplinary view. Requirements of a fully automated LSA process are characterized, features of existing LSA software tools compared, and prior work from the disciplines of information science and computational linguistics reviewed.

KEY MESSAGES

Existing tools vary in their extent of automation provided across the process of LSA. Advances in machine learning for speech recognition and processing have potential to facilitate LSA, but the specifics of child speech and language as well as the lack of child data complicate software design. A transdisciplinary approach is recommended as feasible to support future software development for LSA.

摘要

背景

语言样本分析(LSA)对于出于临床目的和研究而描述和理解儿童语言使用及发展情况而言非常重要。支持LSA的数字工具已有可用,但LSA的许多步骤尚未实现自动化。然而,包含自动语音识别(ASR)(LSA的第一步)的程序已经达到了主流适用性。

总结

为了从技术角度更好地理解自动LSA的复杂性、挑战和未来需求,包括转录、注释和分析自然儿童语言样本的任务,本文采用了多学科视角。对全自动LSA流程的要求进行了描述,比较了现有LSA软件工具的特点,并回顾了信息科学和计算语言学领域的先前工作。

关键信息

现有工具在LSA流程中提供的自动化程度各不相同。语音识别和处理方面的机器学习进展有可能促进LSA,但儿童语音和语言的特殊性以及儿童数据的缺乏使软件设计变得复杂。建议采用跨学科方法来支持未来LSA软件开发,这是可行的。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验