School of Journalism & Communication, Lanzhou University, Lanzhou, Gansu 730000, China.
School of Information Science and Engineering, Lanzhou University, Lanzhou, Gansu 730000, China.
Comput Intell Neurosci. 2022 Sep 30;2022:4713311. doi: 10.1155/2022/4713311. eCollection 2022.
This paper analyzes the parallel and serial information processing structure of visual system and proposes a visual information processing model with three layers: visual receptor layer, visual information conduction and relay layer, and information processing layer of visual information computing and processing area. Based on the analysis, abstraction, and simplification of the biological prototype of each layer in the visual system, a framework model of an artificial neural system corresponding to the visual system is proposed. An artificial neural network model is proposed to simulate the mechanism of visual attention. A network model is formed by introducing the saliency mask map as additional information on the benchmark network, and the selective enhancement operation is performed on the extracted features in different regions according to the mask map. The experimental results show that the visual computing processing network model can effectively improve the classification performance of the network when the appropriate saliency mask is used. The visual information computing and processing model network can work effectively for different data sets and different structures of the benchmark network, which is a universal network model. The complexity of visual information computing and processing model network is very small, and the improvement of network performance is not at the cost of increasing model complexity, but in the way of improving network efficiency. The performance of artificial neural network visual information computation and processing model is directly related to the performance of saliency map used as mask map.
本文分析了视觉系统的并行和串行信息处理结构,提出了具有三层结构的视觉信息处理模型:视觉感受器层、视觉信息传导和中继层以及视觉信息计算和处理区域的信息处理层。基于对视觉系统中各层生物原型的分析、抽象和简化,提出了一个与视觉系统相对应的人工神经网络框架模型。提出了一种人工神经网络模型来模拟视觉注意机制。通过在基准网络上引入显著掩模图作为附加信息,形成一个网络模型,并根据掩模图对不同区域提取的特征进行选择性增强操作。实验结果表明,在使用适当的显著掩模时,视觉计算处理网络模型可以有效地提高网络的分类性能。视觉信息计算和处理模型网络可以有效地应用于不同的数据集和基准网络的不同结构,是一种通用网络模型。视觉信息计算和处理模型网络的复杂性非常小,网络性能的提高不是以增加模型复杂性为代价,而是通过提高网络效率来实现。人工神经网络视觉信息计算和处理模型的性能直接取决于用作掩模图的显著图的性能。