Suppr超能文献

分数阶四神经元时滞递归神经网络的分岔。

Bifurcations of a Fractional-Order Four-Neuron Recurrent Neural Network with Multiple Delays.

机构信息

School of Statistics and Mathematics, Yunnan University of Finance and Economics, Kunming, Yunnan 650221, China.

Department of Mathematics, Yuxi Normal University, Yuxi, Yunnan 653100, China.

出版信息

Comput Intell Neurosci. 2022 Sep 29;2022:1779582. doi: 10.1155/2022/1779582. eCollection 2022.

Abstract

This paper investigates the bifurcation issue of fractional-order four-neuron recurrent neural network with multiple delays. First, the stability and Hopf bifurcation of the system are studied by analyzing the associated characteristic equations. It is shown that the dynamics of delayed fractional-order neural networks not only depend heavily on the communication delay but also significantly affects the applications with different delays. Second, we numerically demonstrate the effect of the order on the Hopf bifurcation. Two numerical examples illustrate the validity of the theoretical results at the end.

摘要

本文研究了具有多个时滞的分数阶四神经元递归神经网络的分岔问题。首先,通过分析相关特征方程研究了系统的稳定性和 Hopf 分岔。结果表明,时滞分数阶神经网络的动力学不仅严重依赖于通信延迟,而且对不同延迟的应用也有显著影响。其次,我们数值研究了阶数对 Hopf 分岔的影响。最后通过两个数值例子验证了理论结果的有效性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a105/9536962/6c837adabb66/CIN2022-1779582.001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验