Suppr超能文献

DBP-iDWT:利用多视角进化特征和离散小波变换提高 DNA 结合蛋白预测

DBP-iDWT: Improving DNA-Binding Proteins Prediction Using Multi-Perspective Evolutionary Profile and Discrete Wavelet Transform.

机构信息

Department of Elementary and Secondary Education, Peshawar, Khyber Pakhtunkhwa, Pakistan.

Faculty of Computing and Information Technology, King Abdulaziz University, Rabigh, Jeddah 21911, Saudi Arabia.

出版信息

Comput Intell Neurosci. 2022 Sep 28;2022:2987407. doi: 10.1155/2022/2987407. eCollection 2022.

Abstract

DNA-binding proteins (DBPs) have crucial biotic activities including DNA replication, recombination, and transcription. DBPs are highly concerned with chronic diseases and are used in the manufacturing of antibiotics and steroids. A series of predictors were established to identify DBPs. However, researchers are still working to further enhance the identification of DBPs. This research designed a novel predictor to identify DBPs more accurately. The features from the sequences are transformed by F-PSSM (Filtered position-specific scoring matrix), PSSM-DPC (Position specific scoring matrix-dipeptide composition), and R-PSSM (Reduced position-specific scoring matrix). To eliminate the noisy attributes, we extended DWT (discrete wavelet transform) to F-PSSM, PSSM-DPC, and R-PSSM and introduced three novel descriptors, namely, F-PSSM-DWT, PSSM-DPC-DWT, and R-PSSM-DWT. Onward, the training of the four models were performed using LiXGB (Light eXtreme gradient boosting), XGB (eXtreme gradient boosting, ERT (extremely randomized trees), and Adaboost. LiXGB with R-PSSM-DWT has attained 6.55% higher accuracy on training and 5.93% on testing dataset than the best existing predictors. The results reveal the excellent performance of our novel predictor over the past studies. DBP-iDWT would be fruitful for establishing more operative therapeutic strategies for fatal disease treatment.

摘要

DNA 结合蛋白(DBP)具有至关重要的生物活性,包括 DNA 复制、重组和转录。DBP 与慢性疾病密切相关,并且被用于抗生素和类固醇的制造。已经建立了一系列预测因子来识别 DBP。然而,研究人员仍在努力进一步提高 DBP 的识别能力。本研究设计了一种新的预测因子,以更准确地识别 DBP。通过 F-PSSM(过滤位置特异性评分矩阵)、PSSM-DPC(位置特异性评分矩阵二肽组成)和 R-PSSM(简化位置特异性评分矩阵)对序列特征进行转换。为了消除噪声属性,我们将 DWT(离散小波变换)扩展到 F-PSSM、PSSM-DPC 和 R-PSSM,并引入了三个新的描述符,即 F-PSSM-DWT、PSSM-DPC-DWT 和 R-PSSM-DWT。随后,使用 LiXGB(轻量级极端梯度提升)、XGB(极端梯度提升)、ERT(极度随机树)和 Adaboost 对这四个模型进行了训练。在训练和测试数据集上,LiXGB 与 R-PSSM-DWT 的准确率分别比现有最佳预测因子高出 6.55%和 5.93%。结果表明,我们的新预测因子在过去的研究中表现出色。DBP-iDWT 将有助于为致命疾病的治疗建立更有效的治疗策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9416/9534628/6f1459cd87a0/CIN2022-2987407.001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验