Suppr超能文献

基于带有密集连接网络(DenseNet)、斯温变压器(Swin transformer)和雷吉网络(RegNet)的深度集成框架对新冠肺炎肺炎的CT扫描图像进行分析。

Analysis of CT scan images for COVID-19 pneumonia based on a deep ensemble framework with DenseNet, Swin transformer, and RegNet.

作者信息

Peng Lihong, Wang Chang, Tian Geng, Liu Guangyi, Li Gan, Lu Yuankang, Yang Jialiang, Chen Min, Li Zejun

机构信息

School of Computer Science, Hunan University of Technology, Zhuzhou, China.

College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou, China.

出版信息

Front Microbiol. 2022 Sep 23;13:995323. doi: 10.3389/fmicb.2022.995323. eCollection 2022.

Abstract

COVID-19 has caused enormous challenges to global economy and public health. The identification of patients with the COVID-19 infection by CT scan images helps prevent its pandemic. Manual screening COVID-19-related CT images spends a lot of time and resources. Artificial intelligence techniques including deep learning can effectively aid doctors and medical workers to screen the COVID-19 patients. In this study, we developed an ensemble deep learning framework, DeepDSR, by combining DenseNet, Swin transformer, and RegNet for COVID-19 image identification. First, we integrate three available COVID-19-related CT image datasets to one larger dataset. Second, we pretrain weights of DenseNet, Swin Transformer, and RegNet on the ImageNet dataset based on transformer learning. Third, we continue to train DenseNet, Swin Transformer, and RegNet on the integrated larger image dataset. Finally, the classification results are obtained by integrating results from the above three models and the soft voting approach. The proposed DeepDSR model is compared to three state-of-the-art deep learning models (EfficientNetV2, ResNet, and Vision transformer) and three individual models (DenseNet, Swin transformer, and RegNet) for binary classification and three-classification problems. The results show that DeepDSR computes the best precision of 0.9833, recall of 0.9895, accuracy of 0.9894, F1-score of 0.9864, AUC of 0.9991 and AUPR of 0.9986 under binary classification problem, and significantly outperforms other methods. Furthermore, DeepDSR obtains the best precision of 0.9740, recall of 0.9653, accuracy of 0.9737, and F1-score of 0.9695 under three-classification problem, further suggesting its powerful image identification ability. We anticipate that the proposed DeepDSR framework contributes to the diagnosis of COVID-19.

摘要

新型冠状病毒肺炎(COVID-19)给全球经济和公共卫生带来了巨大挑战。通过CT扫描图像识别COVID-19感染患者有助于预防其大流行。人工筛查与COVID-19相关的CT图像会耗费大量时间和资源。包括深度学习在内的人工智能技术可以有效地帮助医生和医护人员筛查COVID-19患者。在本研究中,我们通过结合DenseNet、Swin变压器和RegNet开发了一个集成深度学习框架DeepDSR,用于COVID-19图像识别。首先,我们将三个可用的与COVID-19相关的CT图像数据集整合为一个更大的数据集。其次,我们基于变压器学习在ImageNet数据集上对DenseNet、Swin变压器和RegNet的权重进行预训练。第三,我们在整合后的更大图像数据集上继续训练DenseNet、Swin变压器和RegNet。最后,通过整合上述三个模型的结果和软投票方法获得分类结果。将所提出的DeepDSR模型与三种最先进的深度学习模型(EfficientNetV2、ResNet和视觉变压器)以及三种单个模型(DenseNet、Swin变压器和RegNet)进行比较,以解决二分类和三分类问题。结果表明,在二分类问题下,DeepDSR计算出的最佳精度为0.9833,召回率为0.9895,准确率为0.9894,F1分数为0.9864,AUC为0.9991,AUPR为0.9986,显著优于其他方法。此外,在三分类问题下,DeepDSR获得了最佳精度0.9740,召回率0.9653,准确率0.9737,F1分数0.9695,进一步表明了其强大的图像识别能力。我们预计所提出的DeepDSR框架将有助于COVID-19的诊断。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/52ba/9539545/e6ec1171230e/fmicb-13-995323-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验