Ru Ziwei, Zhang Xin, Zhang Man, Mi Jie, Cao Chunyan, Yan Zhifeng, Ge Mingzheng, Liu Hongchao, Wang Jiancheng, Zhang Wei, Cai Weilong, Lai Yuekun, Feng Yu
College of Textile Engineering, Taiyuan University of Technology, Jinzhong030600, P. R. China.
State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan030024, P. R. China.
Environ Sci Technol. 2022 Dec 6;56(23):17288-17297. doi: 10.1021/acs.est.2c04193. Epub 2022 Oct 10.
Desulfurization sorbent with a high active component utilization is of importance for the removal of HS from coal gas at high temperatures. Thus, the hypothesis for producing ZnCoO/carbon nanofiber sorbents via the combinations of electrospinning, in situ hydrothermal growth, and carbonization technique has been rationally constructed in this study. ZnCoO nanoparticles derived from metal-organic frameworks are uniformly loaded on the electrospun carbon nanofibers (CNFs) with high dispersion. ZnCoO/CNFs sorbents possess the highest breakthrough sulfur adsorption capacity (12.4 g S/100 g sorbent) and an excellent utilization rate of the active component (83.2%). The excellent performance of ZnCoO/CNFs can be attributed to the synergetic effect of the hierarchical structure and widely distributed ZnCoO on the CNFs supporter. The decomposition of Zn/Co-ZIFs not only generates the nucleus of oxides but also realizes their physical isolation through the formation of carbon grids on the surface of CNFs, avoiding the aggregation of oxides. Furthermore, ZnCoO/CNFs sorbents show an overwhelming superiority over the ZnO/CNFs sorbent, which is attributed to the introduction of Co and then the promotion of the stability of Zn at high temperatures. The presence of Co also accelerates the adsorption of HS on the active site of the oxide surface. The presented method is beneficial for promoting desulfurization performances and producing sorbents with high utilization of active components.
具有高活性组分利用率的脱硫吸附剂对于高温下从煤气中脱除H₂S至关重要。因此,本研究合理构建了通过静电纺丝、原位水热生长和碳化技术相结合制备ZnCoO/碳纳米纤维吸附剂的假设。源自金属有机框架的ZnCoO纳米颗粒均匀地负载在具有高分散性的静电纺丝碳纳米纤维(CNFs)上。ZnCoO/CNFs吸附剂具有最高的穿透硫吸附容量(12.4 g S/100 g吸附剂)和优异的活性组分利用率(83.2%)。ZnCoO/CNFs的优异性能可归因于分级结构以及ZnCoO在CNFs载体上的广泛分布所产生的协同效应。Zn/Co-ZIFs的分解不仅生成了氧化物核,还通过在CNFs表面形成碳网格实现了它们的物理隔离,避免了氧化物的聚集。此外,ZnCoO/CNFs吸附剂相对于ZnO/CNFs吸附剂表现出压倒性的优势,这归因于Co的引入以及随后在高温下对Zn稳定性的促进。Co的存在还加速了H₂S在氧化物表面活性位点上的吸附。所提出的方法有利于提高脱硫性能并制备具有高活性组分利用率的吸附剂。