Suppr超能文献

基于子空间约束采样和局部低秩正则化的时空编码 MRI:在人脑和前列腺弥散加权和弥散峰度成像中的应用。

Spatiotemporal encoding MRI using subspace-constrained sampling and locally-low-rank regularization: Applications to diffusion weighted and diffusion kurtosis imaging of human brain and prostate.

机构信息

Department of Chemical and Biological Physics and Azrieli National Center for Brain Imaging, Weizmann Institute of Science, Rehovot, Israel.

Department of Chemical and Biological Physics and Azrieli National Center for Brain Imaging, Weizmann Institute of Science, Rehovot, Israel.

出版信息

Magn Reson Imaging. 2022 Dec;94:151-160. doi: 10.1016/j.mri.2022.09.011. Epub 2022 Oct 7.

Abstract

The benefits of performing locally low-rank (LLR) reconstructions on subsampled diffusion weighted and diffusion kurtosis imaging data employing spatiotemporal encoding (SPEN) methods, is investigated. SPEN allows for self-referenced correction of motion-induced phase errors in case of interleaved diffusion-oriented acquisitions, and allows one to overcome distortions otherwise observed along EPI's phase-encoded dimension. In combination with LLR-based reconstructions of the pooled imaging data and with a joint subsampling of b-weighted and interleaved images, additional improvements in terms of sensitivity as well as shortened acquisition times are demonstrated, without noticeable penalties. Details on how the LLR-regularized, subspace-constrained image reconstructions were adapted to SPEN are given; the improvements introduced by adopting these reconstruction frameworks for the accelerated acquisition of diffusivity and of kurtosis imaging data in both relatively homogeneous regions like the human brain and in more challenging regions like the human prostate, are presented and discussed within the context of similar efforts in the field.

摘要

研究了在采用时空编码 (SPEN) 方法对亚采样扩散加权和扩散峰度成像数据进行局部低秩 (LLR) 重建的优势。SPEN 允许在交错扩散方向采集的情况下对运动引起的相位误差进行自我参考校正,并允许克服沿 EPI 相位编码维度观察到的失真。结合基于 LLR 的 pooled 成像数据重建以及 b 加权和交错图像的联合亚采样,可以在不显著损失的情况下提高灵敏度和缩短采集时间。给出了如何将 LLR 正则化、子空间约束的图像重建方法适用于 SPEN 的详细信息;在类似的领域努力的背景下,介绍并讨论了采用这些重建框架加速扩散和峰度成像数据采集在相对均匀的区域(如人脑)和更具挑战性的区域(如人类前列腺)的优势。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验